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12The purpose of these eight lectures is to expose, without trying to be complete, the main results
(actually very few) of the theory of foliated manifolds developed by C. Ehresmann and G.Reeb. Without
aiming at the greater generality, we will try our best to clear up, by examples and proofs, the fundamental
ideas of, for example, the holonomy which is due to C. Ehresmann and is the foundation of the entire
theory.
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1 DEFINITIONS AND EXAMPLES

Let us say a function from an open set of the space of real numbers to another is of class r, where
r = 0,1,2, . . . , n, . . . ,∞ or ω, if it is continuous when r = 0, if it is r times continuously differentiable
when r is an integer > 0 or ∞, and if it is real analytic when r is the symbol ω.

A local homeomorphism3 of Rn (i.e., a homeomorphism from an open set of Rn of dimension n to
another open set of Rn) is said to be of class r if itself is of class r and as well as its inverse.

A manifold of dimension n and class r is a topological space V , unless mentioned explicitly otherwise,
endowed with a set of charts that are homeomorphisms from open sets of Rn to open sets of V , and the
change of charts are also homeomorphisms of class r of Rn

The notions of functions of class r or local homeomorphisms of class r extend naturally to the case
of a manifold of class r.

A function f from a topological space X to a topological space Y is locally a homeomorphism if each
point of X has an open neighborhood mapped homeomorphically under f to an open set in Y .

1.1 DEFINITION OF A FOLIATION IN TERMS OF CHARTS

Identify the real space Rn of dimension n with the product Rp ×Rn−p; denote by x = (x1, . . . , xp) the
first p coordinates of Rn and by y = (y1, . . . , yn−p) the last n − p coordinates.

The simplest example of a foliated structure of codimension p on Rn is the one where the leaves are
the (n − p)-planes parallel to the linear subspace defined by x = 0. A local homeomorphism h of class
r of this structure F0 is a local homeomorphism of Rn that locally preserves the leaves: on an open

1This manuscript reproduces the series lectures given by the author during the C.I.M.E. course on Differential Topology
held in Urbino, July 2-12, 1962. (Translator’s note: This sentence was Google Translated from Italian.)

2Footnote by Danyu Zhang (zhang.8939@osu.edu; DZ later for short) who translated this: The bibliography of the
original version is [Hae62]. I bounced between keeping the wording and structure of sentences of French, and making things
into the language that I am more familiar with in English. The language still looks weird from time to time nonetheless.
Sometimes if I was not sure if there was a typo or it was just that I did not understand, I kept the original and put a
footnote. The numbering of sections, theorems etc. might be different from the original. I should say that I did not read
carefully towards the end. Corrections and comments are all welcome.

3DZ: I kept “homeomorphism” throughout the note even if it might be better to call it a diffeomorphism, since sometimes
when it says “of class r” the case of r = 0 is also included. Though at other times it is clear r > 0, I am too lazy to distinguish.
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neighborhood of each point (x, y) where h is defined, the homeomorphism h(x, y) = (x′, y′) is given by
the equations of the form:

(1)
⎧⎪⎪
⎨
⎪⎪⎩

x′ = h1(x)

y′ = h2(x, y).

Note that h1 is a local homeomorphism of Rp of class r.
On a manifold of dimension n and class r, a foliated structure (or a foliation) F of class r and

codimension p, or of dimension n − p, is defined by a maximal set (complete atlas) of charts {hi} that
consists of homeomorphisms of class r from open sets Ui in Rn to open sets on V and which has the two
properties:

(i) the images hi(Ui) of the charts hi form an open cover of V ,
(ii) each change of charts h−1

j hi is a local homeomorphism of Rn of class r that is locally in the form
of (1).

We also say that a foliation F is topological, differentiable or analytic if r = 0,0 < r ≤ ∞ or r = ω
respectively.

Restricting to the form of the change of charts, we can define the structures even more precisely.
For example the foliated structure is said to be oriented (or transversly oriented) if the change of charts
is of the form (1), with an additional condition that the local homeomorphism h1 of Rp preserves the
orientation. It is said to be transversly analytic if h1 is analytic.

We also have the notion of complex analytic foliations if we replace in the previous definition Rn by
the complex space Cn, and the change of charts are supposed to be complex analytic.

It is also clear that we can more generally replace in previous definition Rn = Rp × Rn−p by the
product B × F of any two topological spaces, and the change of charts are always in the form of (1).

Any foliated structure of class r on V obviously induces such a structure on any open set of V .

1.2 DISTINGUISHED FUNCTIONS

Let F be a foliated structure of codimension p on V , defined by a complete atlas that contains the
charts hi’s and let π be the natural projection of Rn = Rp×Rn−p onto the first factor Rp. The continuous
functions from the open sets of V to Rp that are locally of the form πh−1

i
4 are called the distinguished

functions of F .
The dinstinguished functions form a set of functions {fi} of class r (and of rank p if r > 0) on the

open sets Vi of V to Rp which have the following properties:

a) the Vi’s form an open cover of V
b) a function f on an open set U of V to Rp is distinguished if and only if, for each other distingushed

function fi ∶ Vi → Rp and each point z ∈ U ∩ Vi, there exists a local homeomorphism h of class r
of Rp such that

(1’) f = hfi in a neighborhood of z.

In the case of an oriented foliated structure, the local homeomorphism h of (1’) is forced to preserve
the orientation of Rp.

Note that the distinguished functions completely characterize the structure F and we will use them
constantly in the future.

Let f be a function from a manifold V of class r to another manifold V ′ of class r that is locally a
homeomorphism of class r. Let F ′ be a foliation of class r on V ′. The functions from the open sets of
V to Rp obtained by composing f with the distinguished functions of F ′ are the distinguished functions
of a foliation F of V called the inverse image by f of F ′.

4DZ: Now hi ∶ Vi → Rp, Vi ⊂ V .
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Remark 1.1. The consideration of the distinguished functions leads to the following natural generaliza-
tion.

Let B be a topological space with a pseudogroup Γ of transformations. A foliated Γ-structure on
a topological space X is defined by a family of continuous functions on open sets Vi of V to B that
satisfies the previous two conditions, and the local homeomorphism h in (1’) must be an element of Γ.

The advantage of this definition is that it emphasizes the structure transverse to the leaves (that is
the structure of B on which Γ acts) which is, according to our experience, often more important than
that of the leaves.

1.3 THE LEAVES

Let T0 be a topology of Rn = Rp × Rn−p that is the product of the discrete topology of Rp and the
natural topology of Rn−p. The connected component of Rn under T0 are precisely the leaves of F0, which
are the planes x = constant, equipped with their natural topology. The local automorphisms h of F0 are
also the homeomorphisms for the topology T0 according to (1). Thus there exists a unique topology T
on V such that each chart hi is a homeomorphism from Ui to h(Ui) for the topology induced by T0 and
T respectively.

By definition the leaves of a structure F are the connected components of V relative to the topology
T (called the topology of leaves). The leaves of F are therefore the submanifolds of V of dimension n− p
that are of class r if F is of class r.

The topology of leaves T can also be defined by the distinguished functions: a basis of T is formed
by the inverse images of points of Rp by the various distinguished functions.

The quotient space V by the equivalent relation %, of which the classes are the leaves of F , is called
the leaf space of F . Note that % is an open equivalence relation5 (the leaves that meet an open set of
V form an open cover of V ); in fact, it is generated by the local open equivalence relations %i of which
the classes are the leaves of the foliated structures induced by F on the codomains of the charts hi’s. It
follows that the closure of a subset of V which is a union of leaves is itself a union of leaves of F .

We will often use the notion of the transverse submanifold to a foliation. Let F be a foliation of class
r and codimension p on V . A submanifold W of class r of V (or a manifold W where there is a function
j of class r into V ) is said to be transverse to F if the restriction to W (or the composition with f) of
each distinguished function of F is locally a homeomorphism of class r to Rp. Thus for r > 0, at each
point z ∈ V , the tangent space of W at z is complement to the tangent space of the leaf passing through
z.

A leaf F is said to be proper if the induced topology on F from the topology of V is the same as the
induced topology on F from the topology of leaves T .

From the above, a leaf is proper if and only if there exists a small transverse submanifold to the
foliation intersectiong F at a single point.

A leaf F is closed if it is a closed subspace of V (with the usual topology). A proper leaf is closed if
and only if each compact set in a transverse submanifold intersects F at a finite number of points, and
conversely:

Proposition 1.2. Each closed leaf of a foliation defined on a manifold V with a countable basis is also
proper ( [Hae56]).

An example shows that on a manifold with an uncountable basis, a leaf can fill the entire manifold.
The following lemma was essentially proved in Chevalley [Che46] (see as well [Hae56], p. 4).

Lemma 1.3. If V has a countable basis, each leaf of a foliation on V also has a countable basis.

5DZ: Meaning the quotient map is open.
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The proposition itself then remarks that if a closed leaf F is not proper, it would intersect a transverse
submanifold in a closed perfect set. But a perfect set is not countable, which contradicts to the fact that
F has a countable basis.

For more relevant properties of the general topology of foliations, see Reeb [WR52] Chapter A
and [Ree56].

1.4 ORIENTATION OF A FOLIATION

Let F be a foliation of codimension p defined on V . The distinguished functions of F defined on
a neighborhood of a point z ∈ V are divided into two classes: two distinguished functions f and g are
in the same class if the local homeomorphism h of Rp such that g = hf to the neighborhood of z, is of
degree 1 at f(z). Each of the classes is called a germ of orientation of F at the point z.

We give the set V ∗ of the germs of orientation of F a topology by deciding that a subset U∗ of V ∗ is
an element of the basis of the topology if U∗ is a set of germs of orientation defined by a distinguished
function from different points of its domain. The projection of V ∗ onto V associates to each germ of
orientation at point z, the point z itself, and makes V ∗ a two sheeted cover of V . More precisely, we
have

Proposition 1.4. The space V ∗ of germs of orientation of a foliation F on V is a two sheeted cover of
V . The foliation F∗ on V ∗, the inverse image of F of the covering projection, is oriented. The foliation
F is orientable if and only if the cover is trivial.

Thus any foliation of a simply connected manifold is orientable.

EXAMPLES

1.5 SIMPLE FOLIATIONS

A foliation F of class r on a manifold V is said to be simple if there exists a function f from V to
a manifold W (separated6 or not) of class r and dimension p that satisfies the following condition: for
each homeomorphism g of class r from an open set of Rp to an open set of W , the function g−1f is a
distinguished function of F . The leaves of F are then the connected components of the inverse images of
the points of W under f . The leaf space of F (cfr. 1.2) is a manifold, in general not separated, of class
r, with a projection ϕ onto W that is locally a homeomorphism of class r. Conversely, if the leaf space
is a manifold of dimension p and of class r, then the foliation is simple. We can take for f the natural
function from V to the leaf space of F . A foliation is simple if and only if, for each point z ∈ V , there
exists a distinguished function f defined in a neighborhood U of z that maps the non-empty intersection
of any leaf with U to a single point of Rp.

For example, by the implicit function theorem, a function f of class r (r > 0) and rank p from V to
a manifold of class r and dimension p defines on V a simple foliation.

Each foliated structure of class 0 and codimension 1 of a plane R2 is simple (cf. [HR57]).
On Rn, every foliation of class 0 and codimension 1 all leaves of which are closed is also simple (cf.

3.4 and [Hae56]).
A fibration of class r on a manifold V is also an example of a simple foliation; the leaves are connected

components of fibres. The induced structure on each open set of a simple foliation is simple.

1.6 COMPLETELY INTEGRABLE PLANE FIELDS

Let V be a manifold of class r + 1 ≥ 2 and dimension n. Let Π be a q-plane field of class r on V .
Alternatively, at each point x ∈ V we are given a linear subspace Π(x) of dimension q of the tangent
vector space of V at x, and this subspace is a function of x of class r. The field Π is said to be completely

6DZ: Hausdorff.
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integrable if, for each x of V , there exists a submanifold of class r of V of dimension q, such that at each
point y of W , the tangent space of W at y is Π(y).

If the field Π is locally given by q linearly independent vector fields X1, . . . ,Xq (i.e., at each point x
where it is defined, the q vector fields Xi’s generate Π(x)), and the condition of complete integrability
is equivalent to the fact that the bracket [Xi,Xj] of any two vector fields is a linear combination of the
Xk’s (cf. [Che46]). Dually, if Π is given locally by the annihilation of n − q forms ω1, . . . , ωn−q of degree
1, the field Π is completely integrable if and only if the exterior differentials dωi’s belong to the ring
generated by the forms ωj ’s.

If F is a foliated structure on V of class r + 1 > 1 and dimension q, the tangent planes to the leaves
of F form a completely integrable field of q-planes of class r.

Conversely, a completely integrable q-plane field of class r on V defines a foliated structure F of class
r whose leaves are the maximal integral manifolds of this field. A distinguished function of F is given
by n − q locally independent first integrals.

Let us point out two fundamental problems, but about which nothing is known.
Existence problem. Let V be a manifold with a q-plane field Π of class r. Under what conditions

does there exist on V a completely integrable q-plane field of class r that is homotopic to Π7?
Approximation problem. Let V be a manifold of class ∞ with a completely integrable q-plane field

Π of class r. Under what conditions does there exist on V a completely integrable q-plane field of class
r′ > r that approximates Π?

1.7 CLASSES MODULO A SUBGROUP

Let G be a Lie group and H a connected analytic subgroup of G. The left cosets of G modulo H are
the leaves of an analytic foliated structure on G (cf. [Che46]). All the leaves are isomorphic to each other,
because one can be obtained from a left translation of another. They are proper (cf 1.2) if and only if H
is a closed subgroup. The simplest example of a subgroup that is not closed is obtained by taking for G
the 2 dimensional torus (quotient of the plane R2 by the subgroup of points with integral coordinates)
and for H the 1 parameter subgroup determined by a line passing through (0,0) with irrational slope.

1.8 BUNDLE WITH DISCRETE STRUCTURAL GROUP

Let X and B be manifolds of class r, where X is connected and B is of dimension p. The manifold
X is identified with the quotient of the universal cover X̃ by a group Π of homeomorphisms of B of
class r, which is moreover isomorphic to the fundamental group of B8. Let Φ be a representation of Π
into a group of homeomorphisms of B of class r. Let V be the quotient of the product X̃ ×B by the
equivalence relation that identifies the couples (x′, y′) and (x, y) if there exists an element g of Π such
that x′ = g(x) and y′ = Φ(g)y. The manifold X̃ ×B, with the natural projection to V , is a covering of
V .

The projection of X̃ × B to X̃ gives a projection π of V onto X by passing to the quotient; with
this projection, V is a fibre space with the base X, fibre B and discrete structural group Π (cf. [Ste51])
or with a integrable connection (cf. [Ehr52]). Conversely, each fibred structure of class r with discrete
structure group can be obtained in this manner.

On the other hand, V has a foliated structure of class r and of codimension p whose leaves are
transverse to the fibres. In fact, the projection of X̃ ×B onto B defines a simple foliated structure of
class r on X̃×B. The group Π acting on X̃×B by the transformations of the form (x, y)→ (g(x),Φ(g)y),
where g ∈ Π, is a group of automorphisms of this foliation. By passing to the quotient, we obtain on V
a foliated structure FΦ whose leaves are the images F (y), by the natural projection of X̃ ×B to V , of

7DZ: Homotopic as sections of the tangent bundle.
8DZ: X.
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the submanifolds X̃ × y, where y ∈ B. The manifold V , with the topology of leaves and the projection π
to X, is a cover of X; in particular each leaf is a cover of X.

Here is a specific example of a foliation of codimension one obtained in this way on a manifold of
dimension 3. Let X be a Klein bottle, quotient of the plane R2 by the group action Π generated by the
two transformations

g1

⎧⎪⎪
⎨
⎪⎪⎩

x′1 = x1 + 1

x′2 = x2
and g2

⎧⎪⎪
⎨
⎪⎪⎩

x′1 = −x1

x′2 = x2 + 1

This two generators are related by a single relation g1g
−1
2 g1g2 = identity. Let Φ be a representation of Π

into the group of homeomorphisms of the circle S1 with which g1 is a non-periodic rotation and g2 an
axial symmetry (reversing the orientation). The previous construction gives a foliation on a orientable
manifold of dimension 3; the leaves are either annuli or Möbius bands. Each leaf is everywhere dense.

Generally speaking, the study of foliations FΦ obtained in the previous way essentially reduces to
the study of the representation Φ from the fundamental group of X into the homeomorphisms of B of
class r.

Thus the leaf F (y) corresponds to a orbit of the point y of B depending on the group Φ(Π); the leaf
F (y) is everywhere dense in V if and only if the orbit of y is everywhere dense in B; the leaf F (y) is
proper (cf. 1.3) if the topology of B induces the discrete topology on the orbit of y. The leaf space of
FΦ is the quotient of B by the action of Φ(Π). When B is compact, the stability properties of FΦ and
Φ coincide, etc.

Let us point out that G. Reeb made detailed study in the case where X is a torus, B is a segment
[0,1] and where r ≥ 2 (cf. [Ree61]).

1.9 FOLIATION OF S3 OF CODIMENSION 1

Here is the simplest and most classic example that is due to Reeb. Let D2 be a closed disc of vectors
x in the plane whose norm ∣x∣ is ≤ 1. In the cylindar D2 ×R, consider the foliation whose leaves are the
boundary S1 ×R of the cylindar and whose other leaves are the surfaces defined by (x,

∣x∣2

1−∣x∣2
+ a), where

a is a real parameter and ∣x∣ < 1.
A solid torus T is the quotient of the product D2 ×R by the equivalence relation that identifies (x, t)

and (x, t + n), where n is any integer; there is a one-to-one correspondence between foliations of T and
foliations of D2 × R invariant under the translation (x, t) ↦ (x, t + 1). The previous foliation therefore
defines a foliation in the solid torus whose boundary is a leaf.

Taking two foliated solid tori as above and gluing them along their boundaries by a homeomorphism
that takes the meridians of one to the parallels of the other, we obtain a foliation on S3. All the leaves
are proper and only one leaf is compact, namely the common boundary of the two tori.

Replacing the function ∣x∣2/(1 − ∣x∣2) by an appropriate function, we can obtain a foliation of class
∞; we will see later that there is no foliation on S3 that is analytic.

Choosing another foliation in the solid torus, the boundary is always a leaf, we can infintely vary the
example of Reeb. We can obtain as many compact leaves as we want (they are always torus by a general
theorem by Ehresmann (cf. [Ehr51])); in the known example, the non-compact leaves are homeomorphic
to the planes with certain number of points taken; we can also obtain dense leaves in an open set.

Kneser has a conjecture that every foliation of S3 of codimension 1 admits a compact leaf. Among
the open problems, let us mention the following: what are the knots in S3 whose boundary of a tubular
neighborhood may be a leaf of a foliation? We can see that this is possible for torus knots. Is there a
foliation of S3 with non-compact leaves that are not homeomorphic to punctured planes?

One may wonder also what the compact manifolds of dimension 3 that can be foliated by surfaces.
It is always possible to construct a foliation of codimeison 1 on a 3-dimensional manifold that is a fibre
space by the circles in the sense of Seifert (with singular fibres).
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Let us remark, that apart from the case of S3, we do not know any foliation of spheres, besides the
case where we know the existence of fibrations.

1.10 VORTEX OF A FOLIATION – (cf. Reeb, [WR52] p.114-5).

Let Dr be the closed disc of vectors z in Rr with the norm ∣z∣ ≤ 1. In the product S1 ×Dp−1 ×Dn−p
of the form of triples (θ, x, y), let us perturb the foliation of codimension p whose leaves are the (n − p)
discs {θ} × {x} ×Dn−p and leave the boundary fixed.

Embedding the tube S1 × Dp−1 × Dn−p into a foliated manifold in the manner that S1 × Dp−1 × {y}
is transverse to leaves and (θ, x,Dn−p) is contained in the leaves for each θ, x, y, we can perturb the
foliation inside the tube without changing it outside.

Let α(u, v) be a function of class ∞ of two variables u and v, defined on the square 0 ≤ ∣u∣ ≤ 1 and
0 ≤ ∣v∣ ≤ 1, pair of u and v, equal to 0 in the neighborhood of the boundary and infinity at points u = 0
and ∣v∣ = 1/2.

In the product R×Dp−1×Dn−p, formed by the triples (t, x, y), consider the foliation of class ∞ whose
leaves are the submanifolds defined by

x = x0, t = α(∣x∣, ∣y∣) + t0, where x0 and t0 are constants

and by x = 0, ∣y∣ = 1/2.
The foliation is invariant by the translation (t, x, y)↦ (t+1, x, y), so we get by passing to the quotient

a foliation on S1 ×Dp−1 ×Dn−p.
The leaves passing through the points where x ≠ 0 are the (n − p) discs. Those who pass through

the points where x = 0 and ∣y∣ ≠ 1/2 are homeomorphic to R+ × Sn−p−1 if ∣y∣ > 1/2 or to Rn−p if ∣y∣ < 1/2.
There is a leaf homeomorphic to S1 × Sn−p−1, which is defined by x = 0 and ∣y∣ = 1/2. R+ denotes the
half-line [0,∞]9.10

2 THE NOTION OF HOLONOMY

2.1 INTRODUCTION

Let F be a foliation of class r and codimension p on a manifold V . Let F be a leaf of F and π1(F, z)
the fundamental group of F based at z ∈ F . The holonomy of F is a representation Φ ∶ π1(F, z) → G,
where G is the group of germs of local homeomorphisms of class r of Rp, at the origin 0, which leave 0
fixed (cf. 2.2). The representation is defined up to inner automorphisms of G. The image of Φ is the
holonomy group of F (defined up to conjugacy).

This fundamental notion was introduced by C. Ehresmann (it was implicitly in Reeb’s thesis); it
gives almost all the information you want to know about the neighborhood of a leaf. For example the
stability theorem says that if the holonomy group of a compact leaf is finite, then there exists an open
neighborhood that is a union of compact leaves. In the differentiable or analytic case, we showed [Hae58]
that the holonomy of a leaf itself completely charactrizes its foliated neighborhood (cf. 2.7).

The notion of holonomy is well known in the case of a dynamical system given on a manifold by a
system of ordinary differential equations. Suppose F is a closed trajectory (a circle) and let Bp be a
small ball, centered at z ∈ F , transverse to the trajectories. The trajectory leaves from a point y of Bp,
comes back and intersects Bp again at a point ϕ(y), if y is close enough to z; the function y → ϕ(y) is
a homeomorphism from a neighborhood of z in Bp to a neighborhood of z (the homeomorphism is of
class r if the given system is of class r). The holonomy of F is in this case a representation that sends
a generator of π1(F, z) = Z to the germ of ϕ at z. The two results cited above are obvious in this case
particularly.

9DZ: I do not know what exactly it means here by the right bracket of [0,∞], but I guess I will just leave it here.
10DZ: Seems that inside ∣y∣ ≤ 1/2 when p = 1 it is the usual Reeb foliation.
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2.2 RECALL ON THE GERMS OF FUNCTIONS

Let X and Y be topological spaces. Two continuous functions f and f ′ from a neighborhood of
x ∈ X to Y have the same germ at x if their restrictions to a given neighborhood of x coincide. Thus
the germ of f at x is a set of all functions f ′ from the neighborhood of x to Y that are equal to f in a
neighborhood of x (this neighborhood depends on f ′). The point x is called a source of germ of f at x,
and the point y = f(x) is a target.

If g is a continuous function from a neighborhood of f(x) to a topological space Z, the germ of gf
at the point x depends only on the germs of f at x and g at y and is called the composition of these
germs. So the germs of local homeomorphisms of class r of Rp at the origin that leaves 0 fixed, form a
group.

2.3 THE SPACE OF DISTINGUISHED GERMS OF A FOLIATION

Let F be a foliated structure of class r on a manifold V . Consider the set Ṽ of all the germs of
distinguished functions of F at different points of V (we call the set of distinguished germs of F); this
set Ṽ comes with a projection α onto V , which corresponds to each distinguished germ at the point x
the point x itself. For each distinguished function f of F , defined on an open set U of V , correspond
a cover Ũ to U in Ṽ formed by all the germs of f at points of U ; the subsets Ũ of Ṽ obtained in this
manner form a basis of the topology of Ṽ . The projection α is locally a homeomorphism.

As the topology T of leaves of F on V is finer than the topology of V , there exists a unique topology
T̃ on Ṽ (also called the topology of leaves on Ṽ ) such that α is again a local homeomorphism when Ṽ
and V are equipped with the topologies T̃ and T .

In general, Ṽ with α is not a cover of V .
However, let us check the following remarkable fact.

Proposition 2.1. The space Ṽ of distinguished germs, with the projection11 α, is a cover of V , when
Ṽ and V are equipped with the topology of leaves T̃ and T .

Proof. Let z ∈ V and f be a distinguished function defined in an open neighborhood U of z. The subset
U0 = f−1(x) of U , where x = f(z), is an open set for the topology T . Each element of α−1(U0) is a
germ at a point z′ ∈ U0 of a distinguished function of the form h.f , where h is a local homeomorphism
of Rp of class r, defined on a neighborhood of x. The germs of h.f at points of U0 form a cover Uh of
U0 in Ṽ and an open set for the topology T̃ . The projection α maps homeomorphically Uh onto U0. On
the other hand, if h′ is also a local homeomorphism of Rp and class r, defined in a neighborhood of x,
then Uh and Uh′ only have points in common if h and h′ have the same germ at x, in which case they
coincide. Therefore α−1(U0) is a disjoint union of open sets of T̃ mapped homeomorphically by α onto
U0, this concludes the proof. ∎

2.4 THE HOLONOMY OF A LEAF

Let G be a group of germs of local homeomorphisms of Rp with source and target being the origin (cf.
2.2). Given a leaf F of a foliated structure F on V , let us construct a representation Φ of π1(F, z), z ∈ F ,
to G, defined up to inner automorphisms of G, and call it the holonomy of F . It would be more correct
to define the holonomy of F as an element of H1(F ;G), the first cohomology group of F with coefficient
G (cf. [Hae58]).

Φ will be determined unambiguously by the data of the germ z̃ at z of a distinguished function such
that f(z) = 0. Let c ∶ [0,1] → F be a loop in F based at z whose homotopy class gives an element
γ ∈ π1(F, z); the loop c lifts to a unique path c̃, in the cover Ṽ of V , starting from z̃. The end of c̃ is
the germ z̃′ at z of a distinguished function f ′ such that f ′(z) = 0. Thus there exists a unique element
g of G such that z̃′ = gz̃ (composition of germs, cf. 2.2); g only depends on γ. The correspondence

11DZ: The original sentence was “muni de la projection source α”. What does this “source” mean?
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associating to γ the element g is a homomorphism Φ from π1(F, z) into G (with the opposite convention
to that if γ1 and γ2 ∈ π1(F, z), then γ2γ1 is a homotopy class of a path obtained by first travel along a
path c1 that represents γ1 and then a path c2 that represents γ2).

If we had started from a distinguished germ z̃′ at z, the representation Φ constructed from z̃′ might be
deduced from the construction starting from z̃ by composing it with the inner automorphism determined
by g, where g is an element of G defined by z̃′ = gz̃.

The holonomy group of F is the subgroup of G, defined up to conjugacy, the image of π1(F, z) by Φ.

Remark 2.2. The notion of holonomy can be extended without any change to the case of foliated Γ-
structures (see remark of 1.2) that satisfies the condition of non-degeneracy as follows: given a distin-
guished function f , a point z of its domain and two elements h and h′ of Γ defined at the point f(z), if
hf and h′f have the same germ at z, then h and h′ have the same germ at f(z).

EXAMPLE. In the examples 1.5 and 1.7, the holonomy groups are all identity. In example 1.8, the
holonomy group of a leaf F (y) is isomorphic to the group of germs at y of elements of Φ(Π) that leaves
y fixed. The fundamental group of F (y) is isomorphic to subgroup Πy of Π formed by the elements g
such that Φ(g)y = y. The holonomy of F (y) is equivalent to the representation that associates to each
element g of Πy the germ of Φ(g) at y. In the specific example of 1.8, the holonomy group of a leaf is
identity or of order 2 depending on if the leaf is an annulus or a Möbius band.

In general, if the holonomy group of a leaf F of a foliation of codimension 1 is finite, it is either the
identity, or of order 2 depending on whether F is orientable or not.

For the classic foliation on S3, the holonomy of the compact leaf homeomorphic to a torus sends the
generator represented by the meridian (resp. the parallel) to the germ of a homeomorphism at the origin
of R that is identity on the negative half-line (resp. positive) and that is not the identity on the other
half-line. This shows that the foliation is not analytic.

2.5 GEOMETRIC INTERPRETATION OF THE HOLONOMY

The following considerations should clarify the geometric meaning of the holonomy of a leaf.
Let C be a path in a leaf F and let T0 and T1 be the submanifolds transverse to F containing z0 = C(0)

and z1 = C(1). For each neighborhood U of C in V , there exists a homeomorphism ΦC of class r from
a neighborhood of z0 in T0 to a neighborhood of z1 in T1 that satisfies the properties:

(i) If ΦC is defined at z ∈ T0, then ΦC(z) belongs to the intersection of T1 and the leaf passing
through z of the foliation induced by F on U .

(ii) The germ of ΦC at z0 neither depends on the U nor depends on the path C in the homotopy
class.

(iii) Suppose z0 = z1 and T0 = T1; let γ denote the homotopy class of the loop C in F ; let f̄ be the
restriction to T0 of a distinguished function f such that f(z0) = 0. Then the germ of f̄ΦC f̄

−1 at
0 is the image of γ by the holonomy representation Φ ∶ π1(F, z0)→ G (cf. 2.4).

To construct ΦC , consider a sequence of distinguished functions fi, i = 0,1, . . . , r, defined on the open
sets Vi and a sequence of increasing ti of points on [0,1], t0 = 0 and tr = 1, such that C([tk, tk+1]) ⊂ Vk.
Let T i be the submanifolds transverse to F containing C(ti) and such that T 0 = T0 and T r = T1. We
can suppose that fiC(ti) = 0 and that fi is of the form πh−1

i , where hi is a local chart of F (cf. 1.3).
For each i < r, there exists a homeomorphism Φi of class r from a neighborhood of C(ti) in T i to a
neighborhood of C(ti+1) in T i+1 such that, if zi+1 = Φi(zi), zi+1 sits in the leaf of Vi ∩U passing through
zi .Then ΦC is a composition of all the homeomorphisms Φ0Φ1 . . .Φr−1.

We can also construct ΦC by constructing a continuous function Ψ of B × I in U , where B is in a
neighborhood of z0 in T0, such that Ψ(b,1) is contained in the leaf passing through b, Ψ(z0, t) = C(t),
Ψ(b,0) = b and Ψ(b,1) ∈ T1.

The verification of the properties (ii) and (iii) follow immediately from 2.3 and 2.4.
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Corollary 2.3. Let F be a leaf whose holonomy group contains an element that is the germ at 0 of
a local homeomorphism h of Rp such that, for a point x ≠ 0 of Rp, hm(x) is defined for each positive
integer m and that hm(x) has 0 as a limit. There then exists a leaf, distinct from F if F is proper,
whose closure contains F , and vice versa.

The germ of h is the image by the holonomy Φ of F of an element γ ∈ π1(F, z). Let C be a path
in F at z that represents γ and let T0 be a submanifold transverse to the foliation and contain z. The
local homeomorphism ΦC and T constructed previously satisfies the same condition as h, namely there
exists a point y ∈ T0 such that ym = Φm

C (t) is defined for each positive m, ym tends to z. Then from (i),
the points ym belong to a same leaf whose closure contains z, and so is F according to 1.2.

2.6 THE STABILITY THEOREM

Theorem 2.4. Each compact leaf F whose holonomy group is finite possesses a fundamental system of
neighborhoods (open or compact) that is a union of compact leaves ( [WR52], [ES56]).

Note that the holonomy group of F is always finite if the fundamental group of F is finite.

Proof. Let F be a foliation on Ṽ , inverse image of F by α ∶ Ṽ → V . Although Ṽ is not separated (except
in the case when analytic), the foliation F̃ is in particular simple. In fact the function β from Ṽ to Rp
associating to each distinguished germ its target is a global distinguished function of F̃ (so that F̃ is
simple in the sense of 1.4)12.

The topology of leaves of F̃ is the topology T̃ defined in 2.3. According to the proposition of 2.3,
each leaf F0 of F̃ is a covering of the leaf α(F0) of F , with the the topology of leaf. If the group of
holonomy of F is finite, each leaf F0 of F̃ projecting to F is a finite-sheeted covering of F ; therefore
if F is compact, F0 is as well. We thus remain to show that F0 possesses a fundamental system of
neighborhoods in Ṽ that are saturated by compact leaves; the images by α of these neighborhoods will
form the fundamental system that we seek.

Let Ω0 be an open neighborhood of F0 in V . Let b0 = β(F0). Let W be a finite union of compact
sets of Ṽ such that W is a neighborhood of F0 contained in Ω0 and W ∩ β−1(b0) = F0. Let W0 be the
interior of W ; the subset D =W −W0 is a finite union of compacts, so β(D) is a compact set that does
not contain b0. Let U be a neighborhood of b0 that does not meet β(D) and set Φ0 = β

−1(U) ∩W0.
Φ0 is a neighborhood of F0 contained in Ω0. It is saturated by compact leaves of F̃ . In fact, for each

z ∈ Φ0 we have W 0 ∩ β−1(b) = W ∩ β−1(b), where b = β(z), since b ∉ β(W −W 0)13. Thus W 0 ∩ β−1(b)

is an open set for the topology T̃ that is also closed14 and compact, since it is a union of compact sets
and that T̃ is separated; it is therefore a union of connected components of compact sets of β−1(b), so
a union of compact leaves of F̃ . ∎

The differentiable case. Any proper leaf F of a differentiable F of class r > 0 in V admits a tubular
neighborhood enjoying the following properties: U is given a projection q to F of class r such that
q(x) = x if x ∈ F and that each fibre q−1(x) is a submanifold transverse to F . According to the stability
theorem, if the group of holonomy of a compact leaf F is finite, we can choose U as a union of compact
leaves. We are then exactly in the situation of the example 1.8. The stability theorem can thus be stated
in a more precise form:

Let F be a compact leaf with finite holonomy of a differentiable foliation. Then F admits a funda-
mental system of neighborhoods that are unions of compact leaves, these leaves are all diffeomorphic to
covering spaces of F and their holonomy groups are isomorphic to a subgroup of the holonomy group of
F .

12DZ: 1.5.
13DZ: W0? β−1(U) ∩D = ∅.
14DZ: Closed and open both by definition.

10



Foliated Manifolds

Remark 2.5. It results from the proof of Reeb (cf. [WR52], p. 121-4) that in the topological case, the
leaves neighboring F have fundamental groups which are isomorphic to subgroups of the fundamental
group of F and have also holonomy groups isomorphic to subgroups of holonomy group of F .

2.7 THE HOLONOMY CHARACTERIZES THE FOLIATED NEIGHBORHOOD OF A LEAF

Let us place ourselves in the category of differentiable foliations of class r > 0 and codimension p
defined on a paracompact manifold. G denotes the group of germs at the origin 0 of homeomorphisms
of class r of Rp leaving 0 fixed.
Theorem 2.6. a) Existence. Let F be a connected paracompact manifold of class r and let Φ be a

representation from π1(F, z) into G. There exists then a manifold V with a foliation of class r
and codimension p, possessing a proper leaf isomorphic to F and whose holonomy is Φ.

b) Uniqueness. Let Fi(i = 1,2) be two foliations of class r and codimension p on the paracompact
manifolds Vi. Suppose that there exists a homeomorphism ψ of class r from a proper leaf F1 of
F1 to a proper leaf F2 of F2 so that the diagram

π1(F1, z1) π1(F2, z2)

G

ψ∗

Φ1 Φ2

is commutative, where Φi is the holonomy of Fi, z2 = ψ(z1). There exists then a homeomorphism
Ψ of class r from a neighborhood U1 of F1 to a neighborhood U2 of F2 extending ψ that is an
isomorphism of foliations induced on Ui by Fi.

The proof of this theorem is elementary and consists essentially regluing the pieces properly (cf.
[Hae58] p. 298-301 and 303-304).

The theorem is true in the differentiable case. It is also true in the analytic case (as a consequence
of theorem of GRAUERT and MORREY according to whom every analytic manifold can be embedded
analytically into RN ). On the other hand we do not know if b) is true in the topological case.

With theorems a) and b) we can deduce, using the following elementary lemma, the stability the-
orem in the differentiable case in its strongest form (namely that F possesses a foliated neighborhood
determined as in 1.8, by a representation Φ from π1(F,x) into the homeomorphism group of class r of
a ball B, the map associating to an element of H its germ at 0 is bijective).15

Lemma 2.7. Let H0 be a finite subgroup of the group of germs of homeomorphisms at a point z of a
topological space V . There exists then an arbitrary small neighborhood W of z and a group H of home-
omorphisms of W such that the map associating to each element of H its germ at z is an isomorphism
from H to H0.

2.8 THE INFINITESIMAL HOLONOMY

Let Gr be a group of jets of order r at the origin of homeomorphisms of class r of Rp leaving 0 fixed;
the group Gr is the quotient of G by the subgroup formed by elements of G that are tangent to the
identity at 0 up to the order r16.

If F is a foliation of order r′ ≥ r > 0, the infinitesimal holonomy of order r of a leaf F is the
composition Φr ∶ π1(F, z) → Gr of the holonomy Φ with the natural homomorphism of G onto Gr. The
group of infinitesimal holonomy of order r of F is the image of Φr.

The consideration of this group allows us to decide in certain particular cases if the holonomy group
is finite, which then makes it possible to apply the stability theorem (cf. G. REEB, Remarques sur les
structures feuilletées, Bull. Soc. Math. France, 87 (1959), p. 445-450)).

15DZ: The bundle is formed by the normal neighborhood of F̃ lifted as in the proof of Theorem 2.4, which is a product,
modulo the diagonal action of the kernel of the holonomy representation of F .

16DZ: In other words (from Wikipedia), two functions are equivalent if they have the same value at 0 and all the partial
derivatives agree at 0 up to (including) the r-th order derivatives.
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The following theorem is due to C. Ehresmann. (cf. [Ehr52]).

Theorem 2.8. Let F be a closed submanifold of class r > 0 of a manifold V of class r. For F to admit a
neighborhood with a foliation of class r of which F is a leaf, it is necessary and sufficient that the normal
bundle of F in V admits a discrete structural group.

Proof. The condition is necessary. Let fi (i ∈ I) be a family of distinguished functions such that
f−1
i (0) = U0

i forms an open cover of F . Let Ep be the space of tangent vectors of Rp at 0. The
differential of each fi defines a fibred function fνi of the fibre space of the normal vectors to F , restricted
to U0

i , on E
p. According to the cocycle condition17 of distinguished functions, at z ∈ U0

i ∩U
0
j , we can get

from fνi to fνj by composing fνi with a linear automorphism of Ep which is a locally constant function
at z. Therefore the functions fνi define on the fibre of normal vectors to F a structure of fibre space
with discrete structural group which is perecisely the one that is given by the infinitesimal holonomy
Φ1 ∶ π1(F, z)→ G1 of order 1 of F .

The condition is sufficient. If the normal bundle N of F admits a restriction of its structure group
to a discrete group determined by a homomorphism Φ1 ∶ π1(F, z) → G1, we can apply the construction
of 1.8. We obtain thus on N a foliation of which F , identified with the zero section, is a leaf. We can
identify a neighborhood of F in N with a neighborhood of F in V and then obtain a foliation in a
neighborhood of F such that the infinitesimal holonomy of order 1 of F is given by Φ1. ∎

For example, a complex projective line d in the complex projective plane cannot be a leaf of a
differentiable foliation defined in the neighborhood of d.

3 TOPOLOGICAL AND DIFFERENTIABLE FOLIATIONS OF CODIMENSION 1

In this whole section, V denotes a manifold with a countable basis whose first rational Betti number
is finite. According to 1.3, each closed leaf is proper.

3.1

Proposition 3.1. Let F be a topological foliation on V of codimension 1 and orientable. Through any
point z of V passes a transverse curve to F intersecting each closed leaf at at most one point.

The proof relies on two lemmas ( [Hae56]).

Lemma 3.2. If the first rational Betti number of a connected V is equal to p, then there exist m closed
leaves F1, . . . , Fm, where 0 ≤m ≤ p, such that the complement Vm of ∪mi=1Fi is connected and that if Fm+1

is another closed leaf, the complement Vm+1 of Um+1
i=1 Fi has two connected components.

Proof. Let F1, . . . , Fq, be q distinct leaves such that the complement Vq of the union Φq of Fi, 0 ≤ i ≤ q, is
connected. The exact sequence of cohomology with compact supports in V relatively to closed subspace
Φq gives:

Hn−1(V ) Hn−1(Φq) Hn(Vq) Hn(V ) Hn(Φq),i δ α

the coefficients being the local system of twisted integers by the orientations of V , Vq and Φq.
By Poincaré duality, Hn(Vq) and Hn(V ) are isomorphic respectively to H0(Vq) and H0(V ), with

integer coefficients, which is said to be Z. The groups Hn−1(V ) and Hn−1(Φq) are isomorphic to H1(V )

and to H0(Φ
q) respectively. So they are of rank p and q respectively. As α is an isomorphism, i is

surjective, q ≤ p. Thus there exist an integer m ≤ p and m leaves F1, . . . , Fm that satisfy the statement
of the lemma. ∎

17DZ: The original was “condition liant”.
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Lemma 3.3. If the complementary subspace of each closed leaf has two distinct connected components,
a transversal cannot intersect a closed leaf at more than one points.

Proof. Note that first of all as a result, each closed leaf F is orientable and that if a transverse T
intersects F in z, the points of T on either side of z and very close to z, are sitting in distinct connected
components of the complement of F . If T intersects F elsewhere, there exists a point z1 ∈ F ∩ T such
that the segment T (z, z1) with endpoints z and z1 on T , do not meet F except for at z and z1. Each
point z2 of T near z1 but not on T (z, z1) is in the other connected component of the complement of F
while we let z0 denote a point inside T (z, z1). Now since F is orientable, each leaf intersecting T (z, z1),
in the point z0 close enough to z, will intersect T at a point z2 sitting outside T (z, z1) and close to z1

18,
but this countradicts to the fact that z0 and z1

19 are in the distinct connected components. ∎

Proof of the proposition. Let F1, . . . , Fm be closed leaves satisfying the statement of Lemma 3.2. By
Lemma 3.3, the theorem is true at each point of the complement of the Fi’s.20 Now let T be a transverse
curve intersecting Fi at z only, which does not intersect the other Fj ’s, j ≠ i. If T intersects another
closed leaf F at two points z0 and z1, according to Lemma 3.321, these points locate on either side of
z on T and T cannot intersect F elsewhere. The complement of F in V ′

m = (the complement in V of
the union of the Fi’s) has two connected components V +

m and V −

m and the foliation F is transversely
orientable. So two points sitting in the interior of T0 of the segment T (z0, z1) and on different sides of
z are contained in the distinct connected components V +

m and V −

m. Thus T0 cannot meet a leaf at more
than two points and satisfies the statement of the theorem. ∎

3.2 THE SET OF CLOSED LEAVES

Theorem 3.4. In a foliation of codimension 1 on V , the closure of a union of closed leaves is also a
union of closed leaves.

Proof. It suffices to prove in the case where the foliation is orientable, if not we can pass to a double
cover of V (cf. 1.4). Let F be a leaf in the closure of the union of closed leaves. To show that F
is closed, it suffices to show that, at each z ∈ V , there passes a transversal intersecting F at a single
point22; by Theorem 3.1, we already know that, at z, there passes a transversal intersecting any closed
leaf in at most one point; if this transversal intersects F at two points, it would also intersect a closed
leaf sufficiently close to F at two points, which contradicts to our hypothesis. ∎

Here is another consequence of Theorem 3.4.

Theorem 3.5. Let V be a connected compact manifold endowed with a foliated structure of codimension
1 and transversely analytic (cf. 1.1). Then either all the leaves are compact, or there is at most a finite
number of compact leaves ( [Hae58]).

Proof. From Theorem 3.4, the set of all compact leaves is a compact set K; the compact leaves whose
holonomy groups are finite form an open set according to the stability theorem. It is also a closed set,
because the compact leaves whose holonomy group is infinite are isolated in K (cf. Lemma 2, p. 328
of [Hae58]; this is where the analyticity comes into play).

So if a compact leaf has a finite holonomy group, it is the same for all leaves. Otherwise, there are
at most a finite number of compact leaves. ∎

18DZ: ...because of the orientation.
19DZ: z2.
20DZ: For closed leaves also in the complement.
21DZ: This case only happens when adding Fi the complement of F has only 1 connected component.
22DZ: I guess here V is assumed to be closed, so if F is not closed...
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3.3 THE CASE WHERE ALL LEAVES ARE CLOSED

Theorem 3.6. Let F be a foliation of codimension 1 which is orientable and all the leaves of which are
closed. Then the leaf space is a manifold of dimension 1, in general not separated, and orientable.

Proof. According to Theorem 3.1, at any point in V there passes a transversal intersecting each leaf in
at most one point. This means that the leaf space is locally homeomorphic to a manifold of dimension
one.

When F is not orientable, the leaf space is a manifold of dimension 1 with a finite number of boundary
points.

When all the leaves are compact, the leaf space is a separated manifold of dimension one; in fact
each leaf has a finite holonomy group (cf. corollary 2.5); according to the stability theorem, two distinct
leaves have disjoint neighborhoods which are the union of leaves. If F is orientable, then the leaf space
is homeomorphic to a circle or to a line depending on whether V is compact or not.

If moreover F is of class r > 0, the leaves are the fibers of a fibration of class r of V (cf. 2.6). If
F is non-orientable, the leaf space is homeomorphic to a closed or semi-closed segment depending on
whether V is compact or not. ∎

3.4 EXISTENCE OF A FIRST INTEGRAL

Let F be a foliation of codimension 1 and of class r on a manifold V . A first integral f of class r′ ≤ r
of F is a global distinguished funcion of the underlying foliation F of class r′. In other words, f is a
map of class r′ from V to R, constant on the leaves of F , and such that its restriction to any transverse
curve of class r is a homeomorphism of class r′ in R.

The existence of the first integral f implies that the leaf space V0 of F is a manifold, in general not
separated, of dimension 1 and orientable (in particular all the leaves are closed); moreover there exists
a map f0 from V0 to R defined by the condition f0π = f , where π is the natural projection of V to V0;
f0 is locally a homeomorphism of class r′ from V0 to R.

V

V0 R

f

f0

Conversely, if the leaf space is a manifold V0 of dimension 1 and if f0 is a function on V0 that is
locally a homeomorphism of class r′, then f = f0π is a first integral of class r′.

The problem of the construction of f is therefore reduced to that of the construction of f0.

Theorem 3.7. Let V be a manifold (with a countable basis) and whose first rational Betti number is
zero. Let F be a foliation of codimension 1 on V , orientable, of class r < ω and all the leaves of which
are closed. Then F admits a continuous first integral. The foliated structure induced on a relatively
compact open set V ′, admits a first integral of class r.

In this statement, r ≠ ω (see the remark of 4.4). This theorem is a generalization of a theorem of
Kamke ( [HR57] and [Hae56]).

From 3.3, the leaf space is a non-separated manifold V0 of dimension 1 with a countable basis;
moreover (cf. 3.1, Lemma 3.2), the complement of any point of V0 has two connected components. As a
result (cf. [HR57], p. 113-114) there exists a function f0 from V0 to R which is locally a homeomorphism.

If F is of class r > 0, there is usually no global first integral of class r, as already shown by the
simplest foliated structures of the plane (cf. [HR57]). This is because V0 generally does not satisfy the
following condition.
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Let us say that a manifold V0 of dimension 1, not separated, is endowed with a regular differentiable
structure of class r, if for any function f of class r defined on a neighborhood of x ∈ V0, there exists a
function f ′ of class r defined on V0 such that f and f ′ coincide on a neighborhood of x.

In [HR57], p. 117-8, it is shown that if a manifold V0 satisfies the previous condition, and the
complement of any point of V0 has two connected components, then there exists a function f0 from V0

to R which is locally a homeomorphism of class r. The theorem will therefore be a consequence of the
following lemma.

Lemma 3.8. If the leaf space V0 of a foliation F of class r and codimension 1 on V is a manifold
(possibly non-separated), then the leaf space V ′

0 of a foliated structure F induced on a relatively compact
open V ′ of V is a manifold of a regular differentiable structure of class r.

Proof. Let π and π′ be the natural projections of V and V ′ to V0 and V ′

0 respectively. The injection i
of V ′ into V induces by passing to the quotients a function ψ of V ′

0 in V0 such that πi = ψπ′ which is
locally a homeomorphism of class r.

Let x′ be a point of V ′

0 and let U be an open separated neighborhood of x = ψ(x′); let F be a
leaf π−1(x). We can construct in π−1(U) a compact neighborhood K of the intersection of F with the
closure V̄ ′ in V . The image under π of the intersection of the boundary ∂K of K with V̄ ′ is a compact
set contained in U and not containing x. So let L be a compact neighborhood, homeomorphic to an
interval, of x contained in π(K) and not meeting π(∂K ∩ V̄ ′). Then W = π−1(L) ∩K ∩ V ′ is a closed
subset of V ′ which is a union of the leaves of F ′. Indeed, for all y ∈ L, π−1(y)∩K ∩V ′ is both open and
closed in π−1(y) ∩ V ′.

Let f be a function of class r defined on the neighborhood of x′; we can construct a function g of
class r on L, vanishing on the neighborhood of the boundary of L, and such that gψ is equal to f in the
neighborhood of x′. Then the function on V ′ equal to 0 outside W and to gπ on W is of class r; since it
is constant on the leaves of F ′, it defines by passing to the quotient a function f ′ of class r on V ′

0 which
coincides with f in the neighborhood of x′. ∎

3.5 THE GLOBAL STABILITY THEOREM OF REEB

We cannot end this section without citing one of the most remarkable properties of codimension 1
foliations demonstrated by Reeb ( [WR52], pp. 134-140).

Theorem 3.9. Let V be a connected compact manifold endowed with a foliation of codimension 1.
If a leaf is compact and has a finite fundamental group, then all leaves are compact and have finite
fundamental groups.

We can refer to 3.3 for more precise consequences. Example 1.10 shows that the theorem is no longer
true in codimension greater than 1.

We will limit ourselves to sketching a proof in the differentiable case.
By stability theorem 2.4, compact leaves with finite fundamental group form an open set U in V .

Since V is connected, it suffices to show that a connected component U0 of U is also closed. Any leaf F
adhering to U0 is also compact according to 3.2 (for a more direct reasoning, cf. Reeb [WR52], p. 136).
It will therefore suffice to verify that its fundamental group is also finite.

Without loss of generality, we can assume the foliation is orientable (cf. 1.4). Let W be a tubular
neighborhood of F with its projection q ∶W → F , which is small enough so that the fibers are transverse
to the leaves (cf. 2.6). Any leaf of U0 close enough to F will be contained in W and intersect each fiber
of W at a single point; it will therefore be diffeomorphic to F . So the fundamental group of F will also
be finite. ∎

Here is an interesting application of this theorem also due to Reeb (unpublished).
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Theorem 3.10. Let V be a simply connected compact manifold, having a nonempty boundary that is
connected and simply connected. There cannot exist on V a foliation of codimension 1 such that the
boundary of V is a leaf.

If there was such a foliation, all the leaves would be compact and simply connected. The leaf space
would be a compact manifold of dimension 1 having boundary reduced to a point (corresponding to the
boundary of V ), which is impossible.

For example, the manifold V = Sp×Dn−p, product of a sphere of dimension p and a disk of dimension
n − p, is simply connected and as well as its boundary for p > 1 and n − p − 1 > 1. Although there is
no codimension 1 foliation on V whose boundary is a leaf, the field of (n − 1)-planes tangent to the
boundary can be extended to the interior of V if the Euler characteristic of V is zero, therefore if p is
odd.

For other applications of the global stability theorem, see Reeb [WR52], p. 147.

4 ANALYTIC FOLIATION OF CODIMENSION ONE

4.1

Let V be a manifold endowed with an analytic foliation F of codimension 1. A closed transverse
curve to F is a continuous map τ of the circle S1 in V such that, for any distinguished function fi of F ,
the function fiτ is locally a homeomorphism of S1 to R.

Lemma 4.1 (Fundamental Lemma). A closed curve transverse to an analytic foliation of codimension
1 on V represents an element of infinite order of the fundamental group of V .

Note that a closed transverse curve could be homologous to zero.
This lemma follows immediately from the following property of differentiable foliations.

4.2

Proposition 4.2. Let F be a foliation of codimension 1 and of class 2 on a manifold V . Suppose that
there exists a closed transversal to F homotopic to a constant loop. Then there is a loop on a leaf F
such that the germ of homeomorphism of R at 0 which corresponds to it by the holonomy of F is not the
identity, but it is the germ of a homeomorphism which is identity on (−∞,0] or on [0,∞).

Proof. The closed transversal is a function τ from S1 to V that can be assumed differentiable of class 2
and such that, for each distinguished function fi, the function fiτ is locally a homemorphism of class 2
from S1 into R. As τ is homotopic to a constant map, it is possible to extend it to a function ϕ ∶ D→ V
of class 2 of the disk D bounded by S1 in the plane.

By applying a well-known theorem of Morse (cf. [ES56], p. 316-17), it is possible to choose ϕ so
that, for any distinguished function fi, fiϕ is a non-degenerate number-valued function; this means that
at each of its singular points (points where the first partial derivatives are zero), the matrix of second
partial derivatives is non-singular. We therefore have on D a finite number of singular points for functions
fiϕ which are either of the maximum or minimum type, or of the saddle point type. We can suppose
moreover (cf. [Hae58], p. 318) that the images by ϕ of two distinct singular points do not locate on the
same leaf in a neighborhood of ϕ(D).

We can notice that the functions fiϕ are distinguished functions of a foliated Γ-structure on D, where
Γ is the pseudogroup of analytic local homeomorphisms of R (cf. 1.2). The leaves of this structure are
curves (which may contain a singular point) which are the connected components of the intersections of
D with the leaves of F . We will consider them as trajectories (or union of trajectories if they contain a
singular point) of a vector field on D.
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We can in fact construct a vector field X on D of class 1, which only vanishes at the singular points
of the distinguished functions ϕi = fiϕ, and the differential of each ϕi maps X to the zero field of R23.
This is possible because the foliated structure on D is orientable (indeed, at any point we have exactly
two germs of transverse orientation, and D is simply connected). We can therefore use the results of
the classical theory of curves defined by differential equations. In Poincaré’s terminology [Poi85], the
singular points xi of the field X are centers (if a distinguished function reaches at xi a maximum or a
minimum) or collars (a saddle point); there are at most 4 trajectories which end in a collar; moreover,
two distinct collars are not connected by a trajectory. We do not have foci or nodes. The circle S1 is a
cycle without contact, that is, a closed curve transverse to the trajectories.

Let L be the set of limit cycles of X on D. More precisely, an element of L is a closed curve l in
D which is either a closed trajectory of X, or the union of a trajectory of X and a saddle point if this
trajectory starts and ends at this point; furthermore the image under ϕ of l must be a curve on a leaf
F such that the element of the holonomy group corresponding to it is non-trival24.

Note that first L is non-empty. In fact, there is only a finite number of trajectories which end
at a singular point (saddle point); in general therefore, according to the Poincaré-Bendixon theorem
(cf. [CL55]), a trajectory which intersects the boundary of D has as limit set either a closed trajectory C
which is a limit cycle, or a limit polycycle which is the union C1∪C2 of a saddle point and two trajectories
starting from this point and ending there. The element of the holonomy group corresponding to ϕ(C)

or to the loop obtained by traversing ϕ(C1) and then ϕ(C2) is not trivial (cf. 2.5); therefore at least
one of those which corresponds to loops ϕ(C1) or ϕ(C2) is non-trivial.

The set L is partially ordered: if l1, l2 ∈ L, l2 is less than l1 if l2 is located inside the domain bounded
by l1. Moreover, this ordered set is inductive. Let in fact L0 be an infinite subset of L totally ordered.
The elements of L0 have as their limit either a closed traiectory C, or the union C1∪C2 of two trajectories
and a saddle point from which they originate and where they end. The element of the holonomy group
corresponding to ϕ(C) is non-trivial, since it is the germ at 0 of a local homeomorphism of R which is
not the identity in the neighborhood of a series of points tending towards 0 (these points correspond
to the limit cycles which tend towards 0, cf. 2.5). The same reasoning shows that the element of the
holonomy group corresponding to the loop obtained by traversing ϕ(C1) then ϕ(C2) is not trivial; it is
therefore the same for the element corresponding to one of the loops ϕ(C1) or ϕ(C2).

Let l be a minimal element of L (such an element exists according to Zorn’s theorem). All trajectories
located in the interior of the domain Dl bounded by l are closed; if this was not the case, the Poincaré-
Bendixon theorem would imply, as before, the existence of a limit cycle in Dl, which would contradict
the fact that l is minimal. The element of the holonomy group corresponding to ϕ(l) is therefore the
germ at 0 of a local homeomorphism of R which is the identity on one of the half-lines (−∞,0] or [0,∞)

(cf. 2.5). ∎

4.3 NON-EXISTENCE OF THE ANALYTIC FOLIATION

Theorem 4.3. A compact analytic manifold whose fundamental group does not contain an element of
finite order cannot support an analytic foliation of codimension 1.

For any foliation of codimension 1 on a compact manifold V , there exists a closed transversal (for
more details, cf. [Hae58] p. 324, corollary). According to Lemma 4.1 this transversal represents an
element of infinite order of π1(V ).

For other consequences of the Fundamental Lemma (existence of a compact leaf, ...), cf. [Hae58], p.
324, propos. 2 and p. 326-7, theorem 3.

23DZ: Meaning each trajectory lies in a leaf.
24DZ: There is local homeomorphism h of R at ϕ(l) fixing the origin such that if x is close to 0 then hm(x)→ 0.
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4.4 EXISTENCE OF A GLOBAL FIRST INTEGRAL

Theorem 4.4. Let V be an analytic manifold with a countable basis whose fundamental group contains
only elements of finite order. If F is an analytic foliation of codimension 1 on V , every leaf is closed. If
F is orientable, F admits a continuous global first integral; the restriction of F to a relatively compact
open space admits a first integral of class ∞.

To show that each leaf is closed, we can assume that F is orientable by passing if necessary to a
double cover of V . However, for any orientable foliation of codimension 1 on V , the existence of a
transverse curve meeting a leaf at two points results in the existence of a closed transversal (for more
details, cf. [Hae58] p. 322, last §).

According to the Fundamental Lemma, therefore, a transverse curve cannot meet a leaf at more than
one point, since π1(V ) only has elements of finite order. We can therefore apply the considerations of
3.4.

Remark 4.5. In general, there is no such analytic first integral. It is easy to construct an example of
foliation of Rn such that the leaf space V0 of the foliation induced on a ball is a manifold obtained in
the following way: we take two straight lines and we glue them along their negative parts using the
homeomorphism h(t) = t − t2, t < 0. There is no global analytic function on V0 whose derivative is
everywhere ≠ 0.

4.5 ANALYTIC FOLIATIONS WITH SINGULARITIES

Let F be a real analytic manifold. An analytic foliation F of codimension 1 on V , with singularities,
is defined as previously by a maximal set of analytic functions fi (the distinguished finctions of F)
defined on open sets Ui forming an open cover of V and satisfying the condition: for all x ∈ Ui ∩ Uj ,
there exists a local analytic homeomorphism h∞ji of R such that fj = h∞ji fi in the neighborhood of x. We
no longer assume this time that the functions fi are of rank 1.

The following proposition makes it possible to extend to analytic foliations of codimension 1 with
singularities most of the properties of non-singular structures.

Proposition 4.6. Let F be an analytic foliation of codimension 1 with singularities on a paracompact
manifold V . There exists then a paracompact analytic manifold, endowed with an analytic foliation F ′
of codimension 1 without singularities, and an analytic embedding ϕ from V into V ′ that is a homotopy
equivalence and such that F is the inverse image of F ′ of ϕ.

This means that the mappings obtained by composing ϕ with the distinguished functions of F ′ are
distinguished functions of F . This proposition is a special case of proposition 1, p. 314 of [Hae58].

Proof. If h is an analytic homeomorphism from an open connected set U of R to an open set of R, we
will denote by h̄ the (unique) homeomorphism which can be defined on the largest interval containing
U and which coincides with h on U .

If V is connected and if a distinguished function is constant, then all of them are; we can take for
V ′ the product of V by R. Let us therefore assume that the distinguished functions are not constant.

Let (fi)i∈I be a family of distinguished functions defined on open sets Ui forming an open cover of
V . In the disjoint union E of Ui × R, i ∈ I, the relation (xi, ti) ∼ (xj , tj) if and only if xi = xj = x and
tj = h̄

∞

ji ti, is an equivalence relation. It is indeed reflexive and symmetric because h̄∞ii = identity of R
and h̄∞ij = (h̄∞ji )

−1. It is also transitive; we have in fact h̄∞kifi(x) = h̄
∞

kj h̄
∞

ji fi(x), and the source of h̄∞kj h̄
∞

ji

is connected as an intersection of two intervals; thus this homeomorphism is a restriction of h̄∞ki .
Let V ′′ then be the quotient space of E by this equivalence relation. The canonical projection

gi from Ui × R to V ′′ is a homeomorphism on an open set and the maps g−1
j gi are analytic, because

g−1
j gi(x, t) = (x, h̄∞ji (t)) and h̄∞ji depends only on the connected component of Ui ∩ Uj containing x. So
V ′′ is equipped with a structure of real analytic manifold, but V ′′ is not separated. The maps f ′′i = the
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composition of g−1
i with the natural projection of Ui × R onto R, are the distinguished functions of an

analytic foliation F ′′ of codimension 1 without singularity on V ′′.
The graphs (x, fi(x)) of distinguished functions fi of F give an embedding ϕ of V into V ′′ defined

by ϕ(x) = gi(x, fi(x)), if x ∈ Ui. Note that ϕfi = f ′′i , therefore F is the inverse image of F ′′ of ϕ.
Finally, we can construct (for more details, see remark p. 315 of [Hae58]) a separated open neigh-

borhood V ′ of ϕ(V ) in V ′′ which can deformation retract to ϕ(V ); F ′ will then be the foliation induced
by F ′′ on V . ∎

Corollary 4.7. The Fundamental Lemma 4.1 as well as Theorem 4.4 are also valid for analytic foliations
of codimension 1 with singularities.

Theorem 4.3 implies that any analytic foliation of codimension 1 on a manifold V whose fundamental
group is finite admits singularities. Note that there is always such a foliation, for example the one that
is determined by a single distinguished function, which would be a non-constant analytic function on V .

4.6 APPLICATION TO THE COMPLETELY INTEGRABLE ANALYTIC PFAFF FORMS

On an analytic manifold V , let α be an analytic and completely integrable Pfaff form (1-form), that
is, dα ∧ α = 0. In an open set U of V , a first integral of class r > 0 of α is a function f of class r in U
such that df = gα, where g is a function of class r different from zero in U (called an integrating factor
of class r).

In the neighborhood of a point x which is not a singular point of α (i.e., a point where α does
not vanish), there always exists an analytic first integral; moreover, if f and f ′ are two analytic first
integrals defined in the neighborhood of x, they are related by an invertible analytic relation: there exists
an analytic function h on an open set U to R whose derivative is everywhere ≠ 0, that is, an analytic
homeomorphism h, such that f ′ = hf in the neighborhood of x.

In general, we will say that a family of first integrals fi of α, defined on open sets Ui, forms a
coherent system, if the Ui form an open cover of V and if, for all x ∈ Ui∩Uj , there exists an analytic local
homeomorphism h̄∞ji of R such that fj = h̄∞ji fi in the neighborhood of x. In other words, the first integrals
fi are the distinguished functions of an analytic foliation F of codimension 1 on V (with singularities in
general). Note that F is orientable.

Conversely, the distinguished functions fi of an analytic oriented foliation F of codimension 1 form a
coherent system of first integrals of a 1-form α. In fact, if fj = h∞ji fi, let gji be the derivative of h∞ji with
respect to the natural coordinate of R taken at the point fi(x); it is a strictly positive analytic function
defined on Ui ∩ Uj . As gki = gkjgji on Ui ∩ Uj ∩ Uk, {gji} is a 1-cocycle which determines an element
of H1(V,σ+), where σ+ is the bundle of germs of positive analytic functions on V . But H1(V,σ+) is
always zero (cf. H. Cartan, Bull. Soc. Math. France, 85 (1957), p. 77-99). There are therefore strictly
positive analytic functions gi defined on an open cover U ′

i finer than Ui such that gji = gj/gi on U ′

i ∩U
′

j .
Then the 1-form α will be equal to dfi/gi on U ′

i .
In summary, there is a one-to-one correspondence between transversely orientable analytic foliation

of codimension 1 and a (maximal) coherent system of first integrals of Pfaff forms.
From what we recalled earlier, a completely integrable Pfaff form without singular points admits

a coherent (and unique maximal) system of analytic first integrals. G. Reeb has shown ( [WR52], p.
148-154) that the same is true if dimV > 2 and if the form α completely integrable has only singular
points where the determinant of the first partial derivatives of the coefficients of α is ≠ 0.

From 4.5, a Pfaff form α on V admits a coherent system of analytic first integrals if and only if there
exists an analytic embedding ϕ of V into an analytic manifold V ′ and an analytic Pfaff form α′ on V ′

completely integrable without singular point such that α = ϕ∗α′.
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4.7 finishing off (donne le?)

Theorem 4.8. Let V be a connected real analytic manifold whose fundamental group does not have an
element of finite order. A Pfaff form on V that admits a coherent system of analytic first integrals,
admits an infinitely differentiable first integral on every open set relatively compact of V .

Using the remark of 4.4, we can construct Pfaff form on the sphere S2 with 4 singular points, which
admits a coherent system of analytic first integrals, but which does not admit global analytic first
integrals.
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