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Abstract. We construct an example of transitive Anosov flow on a compact
3-manifold, which admits a transversal torus and is not the suspension of an
Anosov diffeomorphism.

0 Introduction

The simplest example of an Anosov flow on a manifold of dimension 3 is the
suspension of the Thom-Anosov diffeormorphism of a matrix [ 1 1

1 2 ] of T2. The
fiber T2 is a torus transverse to this flow. The geodesic flow on the unit tangent
bundle of a closed surface of Gaussian curvature −1 is also an Anosov flow which
does not admit a transverse immersed torus.

These two flows are transitive, i.e., they admit a dense orbit.
In dimension greater than or equal to 4, Verjovsky [Ver74] shows that Anosov

flows whose invariant foliation is of codimension 1 are transitive. This is false in
dimension 3, since Franks and Williams [FW80] have constructed in 1980 the first
examples of non-transitive Anosov flows.

According to Marco Brunella [Bru93] such non-transitive flows admit a trans-
verse torus.

In January 1992 Etienne Ghys and Thierry Barbot posed the following ques-
tion, (see [Bar92] remark 5.3.6):
Question. LetM be a compact manifold of dimension 3 and X a transitive Anosov
flow transverse to a torus in M . Is the flow X topologically equivalent to a sus-
pension?

We will show that the answer to this question is negative1.

Theorem 0.1. There exists a connected compact orientable manifold M , a field
of vectors X on M which defines a transitive Anosov flow with the following prop-
erties: — there exists a torus T immersed in M transverse to X, — there exists
a periodic orbit of X disjoint from T.

Corollary 0.2. This field X is not conjugate to a suspension.

1J. Christy tells us that from the examples of his article [Chr93] we could also build examples
similar to ours.
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Proof of the corollary. It suffices to show that, for any field of vectors X defined
as the suspension of an Anosov diffemorphism f ∶ T2 → T2, on a manifold Vf , and
for any torus T ⊂ Vf transverse to X, any periodic orbit of X meets T.

Indeed, Vf is torus bundle over S1, and, since f is of Anosov type, we have that
H1(Vf ,R) = R, and that H1(Vf ,R) is generated by the class of a section of the
bundle. Any periodic orbit is homologous to a non-zero multiple of this generator.

The periodic orbits being dense in Vf , one of them, C, intersects T. As the
intersections are always made in the same orientation, the homological intersection
of C with the torus T is non-zero. The same goes for any other periodic orbit,
since its homology class is a non-zero rational multiple of C. ∎

Figure 1.

Let us give a first quick presentation of our example. Consider the field Y on
R2 × S1 defined by:

Y = f(x2 + y2)∂/∂θ + x∂/∂x − y∂/∂y
where f ∶ R+ → [0,1] is a half-hump function of support contained in [0,1/10].
The circle γ = 0×S1 is a closed hyperbolic orbit of Y . Consider in R2 the domain:

∆ = {∣x∣ ≤ 1, ∣y∣ ≤ 1; ∣xy∣ ≤ 1}
∂∆×S1 is a torus with corners which is a union of eight annuli, four tangent to Y
and four transverse to Y .

By gluing together the annuli tangent to Y and the opposite in a manner
compatible with the field Y we obtain a manifold of dimension 3 with the boundary
of two tori T1 and T2 transverse to a field that we will still call Y . On these tori
there are marked meridians, coming from the curves θ = 0 of ∂∆ and the parallels
coming from the curves {z}×S1, z ∈ ∂∆. In gluing T1 and T2 by a map isotopic to
the rotation of π/2 (modifying the meridian and the parallel, so that the stable and
unstable manifolds W s(γ) and W u(γ) are transverse), we can obtain the example
we seek for.

Examples of anosov flows in dimension 3 have already been constructed by
analogous techniques by Goodman [Goo83] and Handel and Thurton [HT80], and
more recently by Brunella [Bru94].

For technical reasons we will give here another construction. Before giving it,
let us study the return map P on a transverse torus T of a hyperbolic flow X.

If P is defined everywhere then the flow is a suspension. In general, the map
P is only defined from the domain Dom(P ) to its image Im(P ). The stable and
unstable foliations of X have as traces on T the foliations f s and fu.

Lemma 0.3. Dom(P ) is saturated by fs and Im(P ) is saturated by fu.
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Proof. If a curve leaves Dom(P ), the return time of X starting from a point on
this curve tends to infinity, on the other hand the derivative of this return time
along a leaf of fs is finite. ∎

This lemma restricts the possible choices of f s, fu and P . The simplest example
consists of taking for f s a foliation having two meridians, say S1 × 0 and S1 × 1/2,
of T = R/Z × R/Z as compact leaves, while the other leaves spiral towards these
meridians (without forming a Reeb component). The foliation fu is constructed
in a similar manner by having two parallels as compact leaves, see Figure 2.

Figure 2.

The domain of P is: T − {the compact leaves of fs}. The map P , on each
annulus of Dom(P ), sends the leaves of fs to the parallel segments a × (0,1/2) or
a × (1/2,0). See Figure 3.

Our example is essentially a ‘suspension’ of such a return map.

1 Construction of a manifold M0 with boundary of two tori equipped
with a transverse field on the boundary

In all of the following S1 will denote the circle R/4Z.
Denote by N̄ the manifold with boundary N̄ = R × [−1,1]/⋃i∈ZD((2i,0),1/4),

which we give the coordinates x, y, and M̄ the product M̄ = N̄ × S1, where we
denote θ the last coordinate.

Let us denote by φ ∶ R→ [−1,1] a function of class C∞ satisfying:

Figure 3.

(1) φ is antisymmetric (φ(−x) = −φ(x)).
(2) For each x ∈ R we have: φ(x + 1) = −φ(x);
(3) φ−1(0) = Z;
(4) φ coincides with the identity on [−1/3,1/3].

Figure 4.

Let us denote by ψ ∶ R→ [0,1] a function of class C∞ equal to 1 over [−1/3,1/3]
and to 0 over R/(−1/2,1/2). See figure 4.

Denote by X̄ the vector field over N defined by X̄ = −φ(x) ⋅ψ(x) ⋅∂/∂x−y∂/∂y.
It is a field on N̄ , transverse to the boundary, and whose time of passage from the
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boundary R × {−1,1} to the boundary ⋃i∈Z ∂D((2i,0),1/4) tends to infinity when
the point (x,1) or (x,−1) tends to a point belonging to (1 + 2Z) × {−1,1}. See
Figure 5.

We will also denote by X̄ the field of the same expression on M̄ .

Figure 5.

We denote by M0 the compact 3-dimensional manifold with boundary equal to
two tori T2, obtained by quotienting M̄ by the diffeomorphism Φ ∶ M̄ → M̄ defined
by:

Φ(x, y, θ) = (x + 2,−y,−θ).

We will denote by T1 the torus corresponding to ∣y∣ = 1 and T2 the torus
corresponding to x2 + y2 = 1/16. These tori are the two connected components of
the boundary of M0.

The field X̄ constructed on M̄ is invariant under the diffeomorphism Φ, and
therefore passes to the quotient to a vector field on M0 which we will denote by
X0. The field X0 is transverse to the two tori T1 and T2 and admits a curve of
fixed points: (1,0) × S1.

Let us now add to X0 a component on the fiber S1 in the neighborhood of this
curve of fixed points, and in the domain of M0 (which is topologically of the form
T2 × I) quotient of R × {[−2/3,−1/2] ∪ [1/2,2/3]} × S1.

Let us denote by α ∶ R2 → R a function of class C∞ having the following
properties:

(1) ∀x ∈ R2, α(x + 2, y) = −α(x, y);
(2) α is identically zero outside the disks D((2i + 1,0),1/3), i ∈ Z
(3) On the disk D((1,0),1/3), α has values in [0,1], depending only on the

radius ((x−1)2 +y2)1/2, is equal to 1 for very small radii and to 0 for radii
close to 1/3.

Let us denote by β ∶ [0,1] → [0,1] a function of class C∞ vanising outside
(1/2,2/3) and strictly positive over this interval.

Let: Ȳt = −(α(x, y) + t ⋅ β(∣y∣) ⋅ sin((Π/2) ⋅ x)))∂/∂θ. This field is passed to the
quotient a field on M0 that we will denote by Yt. We finally obtain a field Zt on
M0 by setting Zt =X0 + Yt.

2 Holonomy of the field Zt, of T1 onto T2

The field Zt, t > 0 is everywhere non-zero. It only has a periodic orbit, γ, which
corresponds to the circle (1,0) × S1. This periodic orbit γ is disjoint from the
boundary of M0, and is hyperbolic of the saddle type. The planes x = 2i + 1 and
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y = 0 induce on M0 two cylinders invariant under the fields X0 and Zt. These
cylinders are the respectively stable and unstable manifolds of γ.

The cylinder x = 2i+ 1 induces on T1 two circles which cut T1 into two annuli.
Likewise, y = 0 cuts T2 into two annuli.

Figure 6.

Any orbit of Zt not contained in the invariant manifolds of the periodic orbit
γ, enters it from the boundary T1 and leaves from T2. The map which, at the
entry point associates the exit point induces a diffeomorphism from T1/W s(γ) to
T2/W s(γ), is called the holonomy of Zt, of T1 onto T2, and denoted as ht.

To describe the holonomy ht, we will need coordinates on the tori T1 and T2.
T1 is given the system of coordinates (x, θ), x ∈ R/4Z, θ ∈ S1, naturally induces

coordinates on M̄ : the point (x, θ) of T1 corresponds to the point (x,1, θ) of M̄ .
T1/W s(γ) is the union of the annuli:

C+
1 = {(x, θ) ∣ x ∈ (−1,1)}, C−

1 = {(x, θ) ∣ x ∈ (1,3)}.

Denote by U = M̄ ∩ {x ∈ (−1,1)}. The closure Ū of U is a fundamental
domain of the diffeomorphism. In this chart, C+

1 is identified with the annulus
U ∩ {y = 1} by (x, θ) = (x,1, θ), and C−

1 is identified with the annulus U ∩ {y = −1}
by (x, θ) = (x − 2,−1,−θ).

In the chart U , the torus T2 is the product Σ×S1 where Σ is the circle x2+y2 =
1/16 ⊂ R2.

Lemma 2.1. There exists a function ω ∶ N̄ → R/4Z which has for level sets the
orbits of X̄ such that ω(x,1) = x mod 4.

Proof. The function ω is defined from the orbits of the field X̄. The only thing to
verify is the differentiability of ω at the points of the axis y = 0 and the fact that
at points of the axis y = 0 different from (0,±1), ∂ω/∂y ≠ 0. This differentiability
is due to the fact that X̄ admits a first integral in the neighborhood of the points
(0,±1) ∈ N̄ . ∎

Lemma 2.1 allows us to choose ω for the coordinate also on the circle Σ.

Figure 7.

Let us now see how to calculate the holonomy ht of Zt: the orbits of Zt differ
from those of X̄ by their component in ∂/∂θ (in particular they have the same
projections on the plane R2). To obtain ht we must therefore essentially add to
hX̄ the deviation in the direction θ of the orbits of Zt. This deviation has two
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terms, one coming from the passage of the orbits in the support of α, and the
other from the passage of the orbits in the support of β.

Crossing the support of β, the orbits are deviated by −t ⋅sin((Π/2) ⋅x) ⋅k, where
k = ∫ +∞−∞ β(et)dt, since the x coordinate is constant along the orbits in the domain
where β is different from 0.

Denote by f ∶ (−1,1) → R the deviation in the direction θ of the orbit passing
through (x,1,0) when it crosses the support of α. We verify that f tends to +∞
at −1, to −∞ at 1 and that its derivative is always negative or zero, and tends to
−∞ at 1 and at −1.

The holonomy ht is then defined by:
ht(x,1, θ) = (x, θ + f(x) − t ⋅ sin((Π/2)x) ⋅ k)

ht(x,−1, θ) = (2 − x, θ + f(x) − t ⋅ sin((Π/2)x) ⋅ k)
that is to say in the chosen coordinates (x, θ) on T1 and (ω, θ) on T2 = Σ × S1.

∀x ∈ (−1,1), ht(x, θ) = (x, θ + f(x) − t ⋅ sin((Π/2)x) ⋅ k)
and, remembering that α(x + 2, y) = −α(x, y),

∀x ∈ (1,3), ht(x, θ) = (4 − x, θ + f(x − 2) + t ⋅ sin((Π/2)x) ⋅ k).

3 A vector field of Anosov type

Denote by A ∶ T1 → T2 the map defined by A(x, θ) = (θ,−x), and denote by M the
manifold obtained by identifying T2 with T1 by A, and denote by Xt, t > 0, the
field induced by Zt; there exists a differentiable structure on M compatible with
that of M0 and making Xt differentiable.

Lemma 3.1. The field Xt preserves a volume form.

Proof. Let us first show that the field Zt preserves a volume. Note that the field X̄
preserves on N̄/(1,0) ⋅ (2Z+ 1) the form dω ∧ dτ , where the τ is the travel time on
the orbits of the field X̄. This form coincides on (0,±1)×R with the form dx∧dy.

In the neighborhood of points (1,0) ⋅(2Z+1) the form dx∧dy is invariant under
X̄. Indeed, let ϑ be a neighborhood of (1,0) on which X̄ = (x − 1)∂/∂x − y∂/∂y,
so on ϑ the form dx ∧ dy is invariant under X̄.

On ϑ/(1,0) the two forms dω ∧ dτ and dx ∧ dy are proportional. They are
invariant under X̄, so we have the equality: dω ∧ dτ = δ(ω) ⋅ dx ∧ dy where the
function δ(ω) is continuous, positive, bounded and bounded away from zero, as
we see by examining the equality on the boundary of ϑ . This shows that dω ∧
dτ extends at (1,0) by δ(1) ⋅ dx ∧ dy, and thus extends in the same way at the
singularities (1,0) ⋅ (2Z + 1) of X̄. As the component of Zt with ∂/∂θ does not
depend on θ the field Zt preserves the volume dω ∧ dτ ∧ dθ. On the two boundary
components the volume is, up to a sign, dω∧dθ∧dτ and dx∧dθ∧dτ , respectively.
As the image of dx ∧ dθ by the gluing function A is dω ∧ dθ, the field Xt also
preserves the volume dω ∧ dθ ∧ dτ . ∎
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Remark. We deduce that the field Xt is transitive.
Denote by T the torus, transverse to Xt, corresponding to the tori Ti of M0,

and give T with the coordinates (x, θ) induced by those of T1.
The composition A○ht then induces on T the first return map on T of the field

Xt, which we will denote by Pt. In the coordinates (x, θ), Pt is written:
∀x ∈ (−1,1), Pt(x, θ) = (θ + f(x) − t ⋅ sin((Π/2)x) ⋅ k,−x)

∀x ∈ (1,3), Pt(x, θ) = (−θ + f(x − 2) + t ⋅ sin((Π/2)x) ⋅ k, x − 4).
Proof of the theorem. Let us show that for t > 0 large enough, Xt is an Anosov flow
satisfying the conditions of the theorem. Let us fix on the torus T a Riemannian
metric which makes (∂/∂x, ∂/∂θ) an orthonormal basis.

Lemma 3.2. For all t > 0 large enough, there exists on the torus T a continuous
cone field, {cu(p)}p∈T with the following properties:

(1) For all p ∈ T, cu(p) is a symmetric closed cone in the tangent space at the
point p in T. Moreover cu(p) varies continuously with p.

(2) For any p of the form (x,±1), the cone cu(p) is reduced to the line directed
by ∂/∂x.

(3) For any p where Pt is defined, i.e. the points p = (x, θ), x ≠ ±1, the image
DpPt(cu(p)) of the cone cu(p) by the differential of Pt at p is included in
the interior of the cone cu(Pt(p)).

(4) There is λ > 1 such as for all p = (x, θ), x ≠ ±1, for all vector v ∈ cu(p), we
have:

λ∥v∥ ≤ ∥DpPt(v)∥.

Proof. It is essentially necessary to calculate the differential of the function Pt. It
is defined by:

∀x ∈ (−1,1), D(x,θ)Pt(∂/∂θ) = ∂/∂x,
∀x ∈ (1,3), D(x,θ)Pt(∂/∂θ) = −∂/∂x,

∀x ∈ (−1,1),D(x,θ)Pt(∂/∂x) = −∂/∂θ + (f ′(x) − tk(Π/2) cos((Π/2)x))∂/∂x,
∀ ∈ (1,3), D(x,θ)Pt(∂/∂x) = +∂/∂θ + (f ′(x − 2) − tk(Π/2) cos((Π/2)(x − 2)))∂/∂x.

What is important in these formulas is that the term (f ′(x)−tk(Π/2) cos((Π/2)x))
is strictly negative when x ∈ (−1,1), tends to −∞ when x approaches ±1; moreover,
its modulus can be reduced by an arbitrary constant, (which one chooses therefore
very large) when one chooses t > 0 sufficiently large.

The same is true when x ∈ (1,3), since the formula is the same, by replacing x
by (x − 2) ∈ (−1,1).

Let us denote by c̃ the constant cone field defined by:
a∂/∂x + b∂/∂θ ∈ c̃⇔ ∣a∣ ≥ 2∣b∣.

The cone field DPt(c̃) is a priori defined on the image of Pt, i.e. on {θ ≠ ±1}.
However Pt(p) tends to {θ = ±1} if and only if p tends to {x = ±1}, and therefore
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if and only if f ′ tends to ∞, which implies that the cone DpPt(c̃) degenerates into
the line led by ∂/∂x.

Note that, for t > 0 large enough, the differential of the map Pt in the coordinate
system ∂/∂x, ∂/∂θ is of the form: [ −A 1±1 0 ] where A is a function of x and of t greater
than a large positive constant A0. The two eigenvalues of the matrix, the roots of
λ2 +Aλ + 1 = 0, are negative, and the modulus of one is of the order of A and the
modulus of the other is of the order of 1/(A). The eigen-direction corresponding
to the eigenvalue λ of modulus of the order of A is if x ∈ (−1,1) and therefore
±1 = −1: ⎡⎢⎢⎢⎢⎢⎣

α

β

⎤⎥⎥⎥⎥⎥⎦
is a solution of

⎡⎢⎢⎢⎢⎢⎣

−A 1

−1 0

⎤⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎣

α

β

⎤⎥⎥⎥⎥⎥⎦
= λ

⎡⎢⎢⎢⎢⎢⎣

α

β

⎤⎥⎥⎥⎥⎥⎦
,

we must therefore have −α of the order of λβ, so ∣β∣ ≪ ∣α∣, which implies that this
eigen-direction is close to the x-axis. We also show that a directing vector [αβ ] of
the eigen-direction corresponding to the eigenvalue of modulus of the order of 1/A
satisfies ∣β∣ ≫ ∣α∣ and therefore that the corresponding eigen-direction is close to
the y-axis (the case where x ∈ (1,3), ±1 = +1 is analogous).

The position of the eigen-directions and the size of the eigenvalues imply that
for any sufficiently large t, cut is contained in the interior of c̃, and we can deduce
that DPt(cut ) is a cone field defined on {θ ≠ ±1}, contained in the interior of cut ,
and therefore extending by continuity over {θ = ±1}. ∎

Lemma 3.3 (Lemma 3.2 bis). For any t > 0 large enough, there exists on the
torus T a continuous cone field, {cs(p)}p∈T, with the following properties:

(1) For all p ∈ T, cs(p) is a symmetric closed cone in the tangent space at
the point p ∈ T, cs(p) varies continuously with p, and the intersection
cu(p) ∩ cs(p) is reduced to the origin of the tangent space at p to T.

(2) For any p of the form (±1, θ), the cone cs(p) is reduced to the line directed
by ∂/∂θ.

(3) For any p where P −1
t is defined, i.e. the points p = (x, θ), θ ≠ ±1, the image

DpP
−1
t (cs(p)) of cone cs(p) by the differential of P −1

t at p is included in
the interior of the cone cs(P −1

t (p)).
(4) There exists λ > 1 such that for all p = (x, θ), θ ≠ ±1, for any vector

v ∈ cs(p), we have:
λ∥v∥ ≤ ∥DpP

−1
t (v)∥.

Proof. The matrix ofDpP
−1
t is of the form [ 0 1

−1 −A ] (if x ∈ (−1,1)), the 2 eigenvalues
are roots of λ2 +Aλ + 1 = 0 and as previously the modulus of one is of the order
of A, and that of the other is of the order of 1/A. The eigen-directions of which a
directing vector is of the form:

⎡⎢⎢⎢⎢⎢⎣

α

β

⎤⎥⎥⎥⎥⎥⎦
is a solution of

⎡⎢⎢⎢⎢⎢⎣

0 1

−1 −A

⎤⎥⎥⎥⎥⎥⎦
⋅
⎡⎢⎢⎢⎢⎢⎣

α

β

⎤⎥⎥⎥⎥⎥⎦
= λ

⎡⎢⎢⎢⎢⎢⎣

α

β

⎤⎥⎥⎥⎥⎥⎦
,
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are again close to the axes, which makes it possible to repeat the previous reason-
ing. the case x ∈ (1,3) is analogous. ∎

The existence of the cone fields cu and cs leads to:

Corollary 3.4. For t > 0 large enough, there exists on the torus T two line fields
ls and lu, invariant under Pt, and satisfying:

(1) For all p ∈ (x = ±1), ls(p) is the line directed by ∂/∂θ;
(2) For all p ∈ (θ = ±1), ls(p) is the line directed by ∂/∂x;
(3) For any p where Pt is defined, for any v ∈ lu(p) we have:

∥v∥ ≤ λ∥DpPt(v)∥, where λ > 1;

(4) For all p where P −1
t is defined, for all v ∈ ls(p) we have:

λ∥v∥ ≤ ∥DpP
−1
t (v)∥, where λ > 1.

Proof. We show that ⋂n=∞n=0 DPnt (cu) is a decreasing intersection of cone fields
which converges to a continuous line field lu, which verifies, of course, the points
(2) and (3) of the corollary. Likewise, ⋂n=∞n=0 DP−n

t (cs) is a continuous line field ls
which verifies the points (1) and (4) of the corollary. ∎

End of the proof of the theorem. From now on we will denote by X the field Xt,
for a fixed value of t large enough to be able to apply Lemmas 3.2 and 3.3 bis and
Corollary 3.4. We will denote by P = Pt its first return map on T.

Recall that γ is a periodic orbit of the field X, and that it is the only orbit
of X not meeting the transverse torus T. Let us denote by τu the 2-plane field
defined on M/γ as follows:

(1) For all p ∈ T, τu(p) is the plane generated by X(p) and by the line lu(p).
(2) For all p ∈M/γ the orbit of p meets T in least one point q. The plane τu(p)

is then the image of τu(q) under the differential of the flow of X. The fact
that lu is invariant under P allows us to show that τu(p) is well-defined in
a unique way of this manner.

We define in an analogous way the field of 2-planes τ s onM/γ, invariant under
the flow of X and defined at any point of T by X and the line ls.

The following lemma completes the proof of the theorem:

Lemma 3.5. (1) The plane fields τu and τ s are transverse on M/γ.
(2) The plane fields τu and τ s are extended by continuity on γ to two fields of

transverse planes, and tangent respectively to W u(γ) and W s(γ).

Proof. Item (1) is obtained by noting that, since τu and τ s are transverse on
T, they remain so when we transport them in M/γ by the flow of X. Item (2)
is essentially a consequence of the ‘λ-lemma’: τu is a plane field containing the
field of vectors X, invariant under the flow of X and transverse to W s(γ). The
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‘λ-lemma’ ensures that it extends by continuity into a field of planes tangent to
W u(γ). Same thing for τ s. ∎

Remark. The manifold M is a graph manifold, i.e., if we cut it along a finite
number of disjoint immersed tori, we get a circle bundle over a compact surface as
the boundary (see Waldhausen [Wal67]). In fact the manifold M0 of §2 is a circle
bundle with the base a projective plane taken off two discs, and M is obtained by
gluing the two boundary components of M0.
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