An Example of a Transitive Anosov flow Transverse to a Torus and Not Conjugate to a Suspension Christian Bonatti and Remi Langevin

ABSTRACT. We construct an example of transitive Anosov flow on a compact 3-manifold, which admits a transversal torus and is not the suspension of an Anosov diffeomorphism.

0 Introduction

The simplest example of an Anosov flow on a manifold of dimension 3 is the suspension of the Thom-Anosov diffeormorphism of a matrix $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ of \mathbb{T}^2 . The fiber \mathbb{T}^2 is a torus transverse to this flow. The geodesic flow on the unit tangent bundle of a closed surface of Gaussian curvature -1 is also an Anosov flow which does not admit a transverse immersed torus.

These two flows are transitive, i.e., they admit a dense orbit.

In dimension greater than or equal to 4, Verjovsky [Ver74] shows that Anosov flows whose invariant foliation is of codimension 1 are transitive. This is false in dimension 3, since Franks and Williams [FW80] have constructed in 1980 the first examples of non-transitive Anosov flows.

According to Marco Brunella [Bru93] such non-transitive flows admit a transverse torus.

In January 1992 Etienne Ghys and Thierry Barbot posed the following question, (see [Bar92] remark 5.3.6):

Question. Let M be a compact manifold of dimension 3 and X a transitive Anosov flow transverse to a torus in M. Is the flow X topologically equivalent to a suspension?

We will show that the answer to this question is negative¹.

Theorem 0.1. There exists a connected compact orientable manifold M, a field of vectors X on M which defines a transitive Anosov flow with the following properties: — there exists a torus \mathbb{T} immersed in M transverse to X, — there exists a periodic orbit of X disjoint from \mathbb{T} .

Corollary 0.2. This field X is not conjugate to a suspension.

¹J. Christy tells us that from the examples of his article [Chr93] we could also build examples similar to ours.

Proof of the corollary. It suffices to show that, for any field of vectors X defined as the suspension of an Anosov diffemorphism $f : \mathbb{T}^2 \to \mathbb{T}^2$, on a manifold V_f , and for any torus $\mathbb{T} \subset V_f$ transverse to X, any periodic orbit of X meets \mathbb{T} .

Indeed, V_f is torus bundle over \mathbb{S}^1 , and, since f is of Anosov type, we have that $H_1(V_f, \mathbb{R}) = \mathbb{R}$, and that $H_1(V_f, \mathbb{R})$ is generated by the class of a section of the bundle. Any periodic orbit is homologous to a non-zero multiple of this generator.

The periodic orbits being dense in V_f , one of them, C, intersects \mathbb{T} . As the intersections are always made in the same orientation, the homological intersection of C with the torus \mathbb{T} is non-zero. The same goes for any other periodic orbit, since its homology class is a non-zero rational multiple of C.

Figure 1.

Let us give a first quick presentation of our example. Consider the field Y on $\mathbb{R}^2 \times \mathbb{S}^1$ defined by:

$$Y = f(x^2 + y^2)\partial/\partial\theta + x\partial/\partial x - y\partial/\partial y$$

where $f : \mathbb{R}^+ \to [0,1]$ is a half-hump function of support contained in [0,1/10]. The circle $\gamma = 0 \times \mathbb{S}^1$ is a closed hyperbolic orbit of Y. Consider in \mathbb{R}^2 the domain:

$$\Delta = \{ |x| \le 1, |y| \le 1; |xy| \le 1 \}$$

 $\partial \Delta \times \mathbb{S}^1$ is a torus with corners which is a union of eight annuli, four tangent to Y and four transverse to Y.

By gluing together the annuli tangent to Y and the opposite in a manner compatible with the field Y we obtain a manifold of dimension 3 with the boundary of two tori \mathbb{T}_1 and \mathbb{T}_2 transverse to a field that we will still call Y. On these tori there are marked meridians, coming from the curves $\theta = 0$ of $\partial \Delta$ and the parallels coming from the curves $\{z\} \times \mathbb{S}^1, z \in \partial \Delta$. In gluing \mathbb{T}_1 and \mathbb{T}_2 by a map isotopic to the rotation of $\pi/2$ (modifying the meridian and the parallel, so that the stable and unstable manifolds $W^s(\gamma)$ and $W^u(\gamma)$ are transverse), we can obtain the example we seek for.

Examples of anosov flows in dimension 3 have already been constructed by analogous techniques by Goodman [Goo83] and Handel and Thurton [HT80], and more recently by Brunella [Bru94].

For technical reasons we will give here another construction. Before giving it, let us study the return map P on a transverse torus \mathbb{T} of a hyperbolic flow X.

If P is defined everywhere then the flow is a suspension. In general, the map P is only defined from the domain Dom(P) to its image Im(P). The stable and unstable foliations of X have as traces on \mathbb{T} the foliations f^s and f^u .

Lemma 0.3. Dom(P) is saturated by f^s and Im(P) is saturated by f^u .

Proof. If a curve leaves Dom(P), the return time of X starting from a point on this curve tends to infinity, on the other hand the derivative of this return time along a leaf of f^s is finite.

This lemma restricts the possible choices of f^s , f^u and P. The simplest example consists of taking for f^s a foliation having two meridians, say $\mathbb{S}^1 \times 0$ and $\mathbb{S}^1 \times 1/2$, of $\mathbb{T} = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ as compact leaves, while the other leaves spiral towards these meridians (without forming a Reeb component). The foliation f^u is constructed in a similar manner by having two parallels as compact leaves, see Figure 2.

Figure 2.

The domain of P is: $\mathbb{T} - \{\text{the compact leaves of } f^s\}$. The map P, on each annulus of Dom(P), sends the leaves of f^s to the parallel segments $a \times (0, 1/2)$ or $a \times (1/2, 0)$. See Figure 3.

Our example is essentially a 'suspension' of such a return map.

1 Construction of a manifold M_0 with boundary of two tori equipped with a transverse field on the boundary

In all of the following \mathbb{S}^1 will denote the circle $\mathbb{R}/4\mathbb{Z}$.

Denote by \overline{N} the manifold with boundary $\overline{N} = \mathbb{R} \times [-1, 1] \setminus \bigcup_{i \in \mathbb{Z}} \mathbb{D}((2i, 0), 1/4)$, which we give the coordinates x, y, and \overline{M} the product $\overline{M} = \overline{N} \times \mathbb{S}^1$, where we denote θ the last coordinate.

Let us denote by $\phi : \mathbb{R} \to [-1, 1]$ a function of class C^{∞} satisfying:

Figure 3.

- (1) ϕ is antisymmetric $(\phi(-x) = -\phi(x))$.
- (2) For each $x \in \mathbb{R}$ we have: $\phi(x+1) = -\phi(x)$;
- (3) $\phi^{-1}(0) = \mathbb{Z};$
- (4) ϕ coincides with the identity on [-1/3, 1/3].

Figure 4.

Let us denote by $\psi : \mathbb{R} \to [0, 1]$ a function of class C^{∞} equal to 1 over [-1/3, 1/3] and to 0 over $\mathbb{R} \setminus (-1/2, 1/2)$. See figure 4.

Denote by \overline{X} the vector field over N defined by $\overline{X} = -\phi(x) \cdot \psi(x) \cdot \partial/\partial x - y \partial/\partial y$. It is a field on \overline{N} , transverse to the boundary, and whose time of passage from the boundary $\mathbb{R} \times \{-1,1\}$ to the boundary $\bigcup_{i \in \mathbb{Z}} \partial \mathbb{D}((2i,0),1/4)$ tends to infinity when the point (x,1) or (x,-1) tends to a point belonging to $(1+2\mathbb{Z}) \times \{-1,1\}$. See Figure 5.

We will also denote by \bar{X} the field of the same expression on \bar{M} .

Figure 5.

We denote by M_0 the compact 3-dimensional manifold with boundary equal to two tori \mathbb{T}^2 , obtained by quotienting \overline{M} by the diffeomorphism $\Phi: \overline{M} \to \overline{M}$ defined by:

$$\Phi(x,y,\theta) = (x+2,-y,-\theta).$$

We will denote by \mathbb{T}_1 the torus corresponding to |y| = 1 and \mathbb{T}_2 the torus corresponding to $x^2 + y^2 = 1/16$. These tori are the two connected components of the boundary of M_0 .

The field \overline{X} constructed on \overline{M} is invariant under the diffeomorphism Φ , and therefore passes to the quotient to a vector field on M_0 which we will denote by X_0 . The field X_0 is transverse to the two tori \mathbb{T}_1 and \mathbb{T}_2 and admits a curve of fixed points: $(1,0) \times \mathbb{S}^1$.

Let us now add to X_0 a component on the fiber \mathbb{S}^1 in the neighborhood of this curve of fixed points, and in the domain of M_0 (which is topologically of the form $\mathbb{T}^2 \times I$) quotient of $\mathbb{R} \times \{[-2/3, -1/2] \cup [1/2, 2/3]\} \times \mathbb{S}^1$.

Let us denote by $\alpha : \mathbb{R}^2 \to \mathbb{R}$ a function of class C^{∞} having the following properties:

- (1) $\forall x \in \mathbb{R}^2, \alpha(x+2,y) = -\alpha(x,y);$
- (2) α is identically zero outside the disks $\mathbb{D}((2i+1,0),1/3), i \in \mathbb{Z}$
- (3) On the disk $\mathbb{D}((1,0), 1/3)$, α has values in [0,1], depending only on the radius $((x-1)^2 + y^2)^{1/2}$, is equal to 1 for very small radii and to 0 for radii close to 1/3.

Let us denote by $\beta : [0,1] \rightarrow [0,1]$ a function of class C^{∞} vanising outside (1/2, 2/3) and strictly positive over this interval.

Let: $Y_t = -(\alpha(x, y) + t \cdot \beta(|y|) \cdot \sin((\Pi/2) \cdot x)))\partial/\partial\theta$. This field is passed to the quotient a field on M_0 that we will denote by Y_t . We finally obtain a field Z_t on M_0 by setting $Z_t = X_0 + Y_t$.

2 Holonomy of the field Z_t , of \mathbb{T}_1 onto \mathbb{T}_2

The field $Z_t, t > 0$ is everywhere non-zero. It only has a periodic orbit, γ , which corresponds to the circle $(1,0) \times \mathbb{S}^1$. This periodic orbit γ is disjoint from the boundary of M_0 , and is hyperbolic of the saddle type. The planes x = 2i + 1 and y = 0 induce on M_0 two cylinders invariant under the fields X_0 and Z_t . These cylinders are the respectively stable and unstable manifolds of γ .

The cylinder x = 2i + 1 induces on \mathbb{T}_1 two circles which cut \mathbb{T}_1 into two annuli. Likewise, y = 0 cuts \mathbb{T}_2 into two annuli.

Figure 6.

Any orbit of Z_t not contained in the invariant manifolds of the periodic orbit γ , enters it from the boundary \mathbb{T}_1 and leaves from \mathbb{T}_2 . The map which, at the entry point associates the exit point induces a diffeomorphism from $\mathbb{T}_1 \setminus W^s(\gamma)$ to $T_2 \setminus W^s(\gamma)$, is called the holonomy of Z_t , of \mathbb{T}_1 onto \mathbb{T}_2 , and denoted as h_t .

To describe the holonomy h_t , we will need coordinates on the tori \mathbb{T}_1 and \mathbb{T}_2 .

 \mathbb{T}_1 is given the system of coordinates $(x,\theta), x \in \mathbb{R}/4\mathbb{Z}, \theta \in \mathbb{S}^1$, naturally induces coordinates on \overline{M} : the point (x,θ) of \mathbb{T}_1 corresponds to the point $(x,1,\theta)$ of \overline{M} . $\mathbb{T}_1 \setminus W^s(\gamma)$ is the union of the annuli:

$$C_1^+ = \{(x,\theta) \mid x \in (-1,1)\}, \quad C_1^- = \{(x,\theta) \mid x \in (1,3)\}.$$

Denote by $U = \overline{M} \cap \{x \in (-1,1)\}$. The closure \overline{U} of U is a fundamental domain of the diffeomorphism. In this chart, C_1^+ is identified with the annulus $U \cap \{y = 1\}$ by $(x, \theta) = (x, 1, \theta)$, and C_1^- is identified with the annulus $U \cap \{y = -1\}$ by $(x, \theta) = (x - 2, -1, -\theta)$.

In the chart U, the torus \mathbb{T}_2 is the product $\Sigma \times \mathbb{S}^1$ where Σ is the circle $x^2 + y^2 = 1/16 \subset \mathbb{R}^2$.

Lemma 2.1. There exists a function $\omega : \overline{N} \to \mathbb{R}/4\mathbb{Z}$ which has for level sets the orbits of \overline{X} such that $\omega(x, 1) = x \mod 4$.

Proof. The function ω is defined from the orbits of the field X. The only thing to verify is the differentiability of ω at the points of the axis y = 0 and the fact that at points of the axis y = 0 different from $(0, \pm 1)$, $\partial \omega / \partial y \neq 0$. This differentiability is due to the fact that \bar{X} admits a first integral in the neighborhood of the points $(0, \pm 1) \in \bar{N}$.

Lemma 2.1 allows us to choose ω for the coordinate also on the circle Σ .

Figure 7.

Let us now see how to calculate the holonomy h_t of Z_t : the orbits of Z_t differ from those of \overline{X} by their component in $\partial/\partial\theta$ (in particular they have the same projections on the plane \mathbb{R}^2). To obtain h_t we must therefore essentially add to $h_{\overline{X}}$ the deviation in the direction θ of the orbits of Z_t . This deviation has two terms, one coming from the passage of the orbits in the support of α , and the other from the passage of the orbits in the support of β .

Crossing the support of β , the orbits are deviated by $-t \cdot \sin((\Pi/2) \cdot x) \cdot k$, where $k = \int_{-\infty}^{+\infty} \beta(e^t) dt$, since the x coordinate is constant along the orbits in the domain where β is different from 0.

Denote by $f: (-1, 1) \to \mathbb{R}$ the deviation in the direction θ of the orbit passing through (x, 1, 0) when it crosses the support of α . We verify that f tends to $+\infty$ at -1, to $-\infty$ at 1 and that its derivative is always negative or zero, and tends to $-\infty$ at 1 and at -1.

The holonomy h_t is then defined by:

$$h_t(x, 1, \theta) = (x, \theta + f(x) - t \cdot \sin((\Pi/2)x) \cdot k)$$
$$h_t(x, -1, \theta) = (2 - x, \theta + f(x) - t \cdot \sin((\Pi/2)x) \cdot k)$$

that is to say in the chosen coordinates (x, θ) on \mathbb{T}_1 and (ω, θ) on $\mathbb{T}_2 = \Sigma \times \mathbb{S}^1$.

$$\forall x \in (-1,1), \ h_t(x,\theta) = (x,\theta + f(x) - t \cdot \sin((\Pi/2)x) \cdot k)$$

and, remembering that $\alpha(x+2,y) = -\alpha(x,y)$,

$$\forall x \in (1,3), \ h_t(x,\theta) = (4 - x, \theta + f(x - 2) + t \cdot \sin((\Pi/2)x) \cdot k).$$

3 A vector field of Anosov type

Denote by $A: \mathbb{T}_1 \to \mathbb{T}_2$ the map defined by $A(x,\theta) = (\theta, -x)$, and denote by M the manifold obtained by identifying \mathbb{T}_2 with \mathbb{T}_1 by A, and denote by $X_t, t > 0$, the field induced by Z_t ; there exists a differentiable structure on M compatible with that of M_0 and making X_t differentiable.

Lemma 3.1. The field X_t preserves a volume form.

Proof. Let us first show that the field Z_t preserves a volume. Note that the field \overline{X} preserves on $\overline{N} \setminus (1,0) \cdot (2\mathbb{Z}+1)$ the form $d\omega \wedge d\tau$, where the τ is the travel time on the orbits of the field \overline{X} . This form coincides on $(0,\pm 1) \times \mathbb{R}$ with the form $dx \wedge dy$.

In the neighborhood of points $(1,0) \cdot (2\mathbb{Z}+1)$ the form $dx \wedge dy$ is invariant under \overline{X} . Indeed, let ϑ be a neighborhood of (1,0) on which $\overline{X} = (x-1)\partial/\partial x - y\partial/\partial y$, so on ϑ the form $dx \wedge dy$ is invariant under \overline{X} .

On $\vartheta \setminus (1,0)$ the two forms $d\omega \wedge d\tau$ and $dx \wedge dy$ are proportional. They are invariant under \bar{X} , so we have the equality: $d\omega \wedge d\tau = \delta(\omega) \cdot dx \wedge dy$ where the function $\delta(\omega)$ is continuous, positive, bounded and bounded away from zero, as we see by examining the equality on the boundary of ϑ . This shows that $d\omega \wedge$ $d\tau$ extends at (1,0) by $\delta(1) \cdot dx \wedge dy$, and thus extends in the same way at the singularities $(1,0) \cdot (2\mathbb{Z}+1)$ of \bar{X} . As the component of Z_t with $\partial/\partial\theta$ does not depend on θ the field Z_t preserves the volume $d\omega \wedge d\tau \wedge d\theta$. On the two boundary components the volume is, up to a sign, $d\omega \wedge d\theta \wedge d\tau$ and $dx \wedge d\theta \wedge d\tau$, respectively. As the image of $dx \wedge d\theta$ by the gluing function A is $d\omega \wedge d\theta$, the field X_t also preserves the volume $d\omega \wedge d\theta \wedge d\tau$. *Remark.* We deduce that the field X_t is transitive.

Denote by \mathbb{T} the torus, transverse to X_t , corresponding to the tori \mathbb{T}_i of M_0 , and give \mathbb{T} with the coordinates (x, θ) induced by those of \mathbb{T}_1 .

The composition $A \circ h_t$ then induces on \mathbb{T} the first return map on \mathbb{T} of the field X_t , which we will denote by P_t . In the coordinates (x, θ) , P_t is written:

$$\forall x \in (-1,1), P_t(x,\theta) = (\theta + f(x) - t \cdot \sin((\Pi/2)x) \cdot k, -x)$$

$$\forall x \in (1,3), P_t(x,\theta) = (-\theta + f(x-2) + t \cdot \sin((\Pi/2)x) \cdot k, x - 4).$$

Proof of the theorem. Let us show that for t > 0 large enough, X_t is an Anosov flow satisfying the conditions of the theorem. Let us fix on the torus \mathbb{T} a Riemannian metric which makes $(\partial/\partial x, \partial/\partial \theta)$ an orthonormal basis.

Lemma 3.2. For all t > 0 large enough, there exists on the torus \mathbb{T} a continuous cone field, $\{c^u(p)\}_{p \in \mathbb{T}}$ with the following properties:

- (1) For all $p \in \mathbb{T}$, $c^u(p)$ is a symmetric closed cone in the tangent space at the point p in \mathbb{T} . Moreover $c^u(p)$ varies continuously with p.
- (2) For any p of the form $(x, \pm 1)$, the cone $c^u(p)$ is reduced to the line directed by $\partial/\partial x$.
- (3) For any p where P_t is defined, i.e. the points $p = (x, \theta), x \neq \pm 1$, the image $D_p P_t(c^u(p))$ of the cone $c^u(p)$ by the differential of P_t at p is included in the interior of the cone $c^u(P_t(p))$.
- (4) There is $\lambda > 1$ such as for all $p = (x, \theta), x \neq \pm 1$, for all vector $v \in c^u(p)$, we have:

$$\lambda \|v\| \le \|D_p P_t(v)\|.$$

Proof. It is essentially necessary to calculate the differential of the function P_t . It is defined by:

$$\forall x \in (-1,1), \ D_{(x,\theta)} P_t(\partial/\partial\theta) = \partial/\partial x, \\ \forall x \in (1,3), \ D_{(x,\theta)} P_t(\partial/\partial\theta) = -\partial/\partial x,$$

 $\forall x \in (-1,1), D_{(x,\theta)} P_t(\partial/\partial x) = -\partial/\partial \theta + (f'(x) - tk(\Pi/2)\cos((\Pi/2)x))\partial/\partial x,$

 $\forall \in (1,3), \ D_{(x,\theta)}P_t(\partial/\partial x) = +\partial/\partial\theta + (f'(x-2) - tk(\Pi/2)\cos((\Pi/2)(x-2)))\partial/\partial x.$

What is important in these formulas is that the term $(f'(x)-tk(\Pi/2)\cos((\Pi/2)x))$ is strictly negative when $x \in (-1, 1)$, tends to $-\infty$ when x approaches ± 1 ; moreover, its modulus can be reduced by an arbitrary constant, (which one chooses therefore very large) when one chooses t > 0 sufficiently large.

The same is true when $x \in (1,3)$, since the formula is the same, by replacing x by $(x-2) \in (-1,1)$.

Let us denote by \tilde{c} the constant cone field defined by:

$$a\partial/\partial x + b\partial/\partial \theta \in \tilde{c} \Leftrightarrow |a| \ge 2|b|.$$

The cone field $DP_t(\tilde{c})$ is a priori defined on the image of P_t , i.e. on $\{\theta \neq \pm 1\}$. However $P_t(p)$ tends to $\{\theta = \pm 1\}$ if and only if p tends to $\{x = \pm 1\}$, and therefore if and only if f' tends to ∞ , which implies that the cone $D_p P_t(\tilde{c})$ degenerates into the line led by $\partial/\partial x$.

Note that, for t > 0 large enough, the differential of the map P_t in the coordinate system $\partial/\partial x$, $\partial/\partial \theta$ is of the form: $\begin{bmatrix} -A & 1 \\ \pm 1 & 0 \end{bmatrix}$ where A is a function of x and of t greater than a large positive constant A_0 . The two eigenvalues of the matrix, the roots of $\lambda^2 + A\lambda + 1 = 0$, are negative, and the modulus of one is of the order of A and the modulus of the other is of the order of 1/(A). The eigen-direction corresponding to the eigenvalue λ of modulus of the order of A is if $x \in (-1, 1)$ and therefore $\pm 1 = -1$:

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \text{ is a solution of } \begin{bmatrix} -A & 1 \\ -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \lambda \begin{bmatrix} \alpha \\ \beta \end{bmatrix},$$

we must therefore have $-\alpha$ of the order of $\lambda\beta$, so $|\beta| \ll |\alpha|$, which implies that this eigen-direction is close to the *x*-axis. We also show that a directing vector $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ of the eigen-direction corresponding to the eigenvalue of modulus of the order of 1/A satisfies $|\beta| \gg |\alpha|$ and therefore that the corresponding eigen-direction is close to the *y*-axis (the case where $x \in (1,3), \pm 1 = +1$ is analogous).

The position of the eigen-directions and the size of the eigenvalues imply that for any sufficiently large t, c_t^u is contained in the interior of \tilde{c} , and we can deduce that $DP_t(c_t^u)$ is a cone field defined on $\{\theta \neq \pm 1\}$, contained in the interior of c_t^u , and therefore extending by continuity over $\{\theta = \pm 1\}$.

Lemma 3.3 (Lemma 3.2 bis). For any t > 0 large enough, there exists on the torus \mathbb{T} a continuous cone field, $\{c^s(p)\}_{p \in \mathbb{T}}$, with the following properties:

- (1) For all $p \in \mathbb{T}$, $c^{s}(p)$ is a symmetric closed cone in the tangent space at the point $p \in \mathbb{T}$, $c^{s}(p)$ varies continuously with p, and the intersection $c^{u}(p) \cap c^{s}(p)$ is reduced to the origin of the tangent space at p to \mathbb{T} .
- (2) For any p of the form $(\pm 1, \theta)$, the cone $c^{s}(p)$ is reduced to the line directed by $\partial/\partial\theta$.
- (3) For any p where P_t^{-1} is defined, i.e. the points $p = (x, \theta), \ \theta \neq \pm 1$, the image $D_p P_t^{-1}(c^s(p))$ of cone $c^s(p)$ by the differential of P_t^{-1} at p is included in the interior of the cone $c^s(P_t^{-1}(p))$.
- (4) There exists $\lambda > 1$ such that for all $p = (x, \theta)$, $\theta \neq \pm 1$, for any vector $v \in c^{s}(p)$, we have:

$$\lambda \|v\| \le \|D_p P_t^{-1}(v)\|.$$

Proof. The matrix of $D_p P_t^{-1}$ is of the form $\begin{bmatrix} 0 & 1 \\ -1 & -A \end{bmatrix}$ (if $x \in (-1, 1)$), the 2 eigenvalues are roots of $\lambda^2 + A\lambda + 1 = 0$ and as previously the modulus of one is of the order of A, and that of the other is of the order of 1/A. The eigen-directions of which a directing vector is of the form:

$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix} \text{ is a solution of } \begin{bmatrix} 0 & 1 \\ -1 & -A \end{bmatrix} \cdot \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \lambda \begin{bmatrix} \alpha \\ \beta \end{bmatrix},$$

are again close to the axes, which makes it possible to repeat the previous reasoning. the case $x \in (1,3)$ is analogous.

The existence of the cone fields c^u and c^s leads to:

Corollary 3.4. For t > 0 large enough, there exists on the torus \mathbb{T} two line fields l^s and l^u , invariant under P_t , and satisfying:

- (1) For all $p \in (x = \pm 1)$, $l^{s}(p)$ is the line directed by $\partial/\partial\theta$;
- (2) For all $p \in (\theta = \pm 1)$, $l^{s}(p)$ is the line directed by $\partial/\partial x$;
- (3) For any p where P_t is defined, for any $v \in l^u(p)$ we have:

$$\|v\| \leq \lambda \|D_p P_t(v)\|, \text{ where } \lambda > 1;$$

(4) For all p where P_t^{-1} is defined, for all $v \in l^s(p)$ we have:

 $\lambda \|v\| \le \|D_p P_t^{-1}(v)\|, \quad where \quad \lambda > 1.$

Proof. We show that $\bigcap_{n=0}^{n=\infty} DP_t^n(c^u)$ is a decreasing intersection of cone fields which converges to a continuous line field l^u , which verifies, of course, the points (2) and (3) of the corollary. Likewise, $\bigcap_{n=0}^{n=\infty} DP_t^{-n}(c^s)$ is a continuous line field l^s which verifies the points (1) and (4) of the corollary.

End of the proof of the theorem. From now on we will denote by X the field X_t , for a fixed value of t large enough to be able to apply Lemmas 3.2 and 3.3 bis and Corollary 3.4. We will denote by $P = P_t$ its first return map on \mathbb{T} .

Recall that γ is a periodic orbit of the field X, and that it is the only orbit of X not meeting the transverse torus T. Let us denote by τ^u the 2-plane field defined on $M \setminus \gamma$ as follows:

- (1) For all $p \in \mathbb{T}$, $\tau^u(p)$ is the plane generated by X(p) and by the line $l^u(p)$.
- (2) For all $p \in M \setminus \gamma$ the orbit of p meets \mathbb{T} in least one point q. The plane $\tau^u(p)$ is then the image of $\tau^u(q)$ under the differential of the flow of X. The fact that l^u is invariant under P allows us to show that $\tau^u(p)$ is well-defined in a unique way of this manner.

We define in an analogous way the field of 2-planes τ^s on $M \setminus \gamma$, invariant under the flow of X and defined at any point of \mathbb{T} by X and the line l^s .

The following lemma completes the proof of the theorem:

Lemma 3.5. (1) The plane fields τ^u and τ^s are transverse on $M \setminus \gamma$.

(2) The plane fields τ^u and τ^s are extended by continuity on γ to two fields of transverse planes, and tangent respectively to $W^u(\gamma)$ and $W^s(\gamma)$.

Proof. Item (1) is obtained by noting that, since τ^u and τ^s are transverse on \mathbb{T} , they remain so when we transport them in $M \setminus \gamma$ by the flow of X. Item (2) is essentially a consequence of the ' λ -lemma': τ^u is a plane field containing the field of vectors X, invariant under the flow of X and transverse to $W^s(\gamma)$. The

 λ -lemma' ensures that it extends by continuity into a field of planes tangent to $W^u(\gamma)$. Same thing for τ^s .

Remark. The manifold M is a graph manifold, i.e., if we cut it along a finite number of disjoint immersed tori, we get a circle bundle over a compact surface as the boundary (see Waldhausen [Wal67]). In fact the manifold M_0 of §2 is a circle bundle with the base a projective plane taken off two discs, and M is obtained by gluing the two boundary components of M_0 .

References

- [Bar92] Thierry Barbot. Géométrie transverse des flots d'Anosov. PhD thesis, Lyon 1, 1992.
- [Bru93] Marco Brunella. Separating the basic sets of a nontransitive anosov flow. Bulletin of the London Mathematical Society, 25(5):487–490, 1993.
- [Bru94] Marco Brunella. On the discrete godbillon-vey invariant and dehn surgery on geodesic flows. In Annales de la Faculté des sciences de Toulouse: Mathématiques, volume 3, pages 335–344, 1994.
- [Chr93] Joe Christy. Branched surfaces and attractors. i: Dynamic branched surfaces. Transactions of the American Mathematical Society, pages 759–784, 1993.
- [FW80] John Franks and Bob Williams. Anomalous anosov flows. In Zbigniew Nitecki and Clark Robinson, editors, *Global Theory of Dynamical Systems*, pages 158–174, Berlin, Heidelberg, 1980. Springer Berlin Heidelberg.
- [Goo83] Sue Goodman. Dehn surgery on anosov flows. In J. Palis, editor, Geometric Dynamics, pages 300–307, Berlin, Heidelberg, 1983. Springer Berlin Heidelberg.
- [HT80] Michael Handel and William P Thurston. Anosov flows on new three manifolds. Inventiones mathematicae, 59(2):95–103, 1980.
- [Ver74] Alberto Verjovsky. Codimension one anosov flows. Bol. Soc. Mat. Mexicana, 19(2):49–77, 1974.
- [Wal67] Friedhelm Waldhausen. Eine klasse von 3-dimensionalen mannigfaltigkeiten. i. Inventiones mathematicae, 3(4):308–333, 1967.

Translated by Danyu Zhang (zhang.8939@osu.edu), October 2021