
ANOSOV DIFFEOMORPHISMS ON A PRODUCT OF SURFACES

DANYU ZHANG

Abstract. We show that there is no transitive Anosov diffeomorphism with the global product
structure, on a product of two closed surfaces, each of which has genus greater than or equal to
two.

1 Introduction

We start by recalling the definition of an Anosov diffeomorphism and some progress on the
classification problems of Anosov diffeomorphisms. Let f ∶ M → M be a C1 diffeomorphism. If
there exist an invariant splitting TM = Es ⊕ Eu under df , a Riemannian metric ∥ ⋅ ∥ on M , and
constants C > 0, λ ∈ (0,1), such that

∥dfnvs∥ ≤ Cλn∥vs∥, for vs ∈ Es,

∥df−nvu∥ ≤ Cλn∥vu∥, for vu ∈ Eu,
then we call f an Anosov diffeomorphism. A dynamical system is transitive if there exists a dense
orbit.

It is a long-time open question (see for example [Sma98]) if every Anosov diffeomorphism lives
on up to a finite cover a nilmanifold (a manifold whose universal cover is a simply connected
nilpotent Lie group). Codimension-one (i.e. either the stable or unstable bundle has dimension 1)
Anosov diffeomorphisms only live on torus, according to Franks [Fra70] and Newhouse [New70].
Yano [Yan83] has showed that there are no transitive Anosov diffeomorphisms on negatively curved
manifolds. Gogolev and Lafont [GL16] proved that a productM1×⋯×Mk×N whereMi, i = 1, . . . , k
is a closed negatively curved manifold of dimension ≥ 3 and N is a nilmanifold does not admit
transitive Anosov diffeomorphisms. Neofytidis [Neo21] showed that any geometrizable 4-manifold
which is not finitely covered by a product of closed surfaces Sg × Sh of genus g, h where g ≥ 2 or
h ≥ 2 does not admit transitive Anosov diffeomorphisms.

Consider the pair of the stable and unstable foliations of an Anosov diffeomorphism lifted to the
universal cover, if every pair of the stable and unstable leaves in the universal cover intersects only
once, then we say that the Anosov diffeomorphism has the global product structure. Hammerlindl
[Ham14] showed that if an Anosov diffeomorphism has the polynomial global product structure,
(i.e., suppose x, y denote two points in the universal cover, z denotes the unique intersection of the
stable leaf passing through x and the unstable leaf passing through y, and ds, du denote the distance
along the stable and unstable leaves respectively, while d is the extrinsic metric, and then there
exists a polynomial p such that ds(x, z) + du(y, z) < p(d(x, y))), then it is topologically conjugate
to an infranilmanifold automorphism. The polynomial global product structure implies that the
fundamental group has polynomial growth.

In this short note, we want to partially answer the question asked in [GL16], whether there is an
Anosov diffeomorphism on a product of two hyperbolic surfaces. We want to point out that this
case is interesting to us because it lies in between the above already known cases: The 4-manifold
is a product of two hyperbolic manifolds of dimension 2, and the leaves do not have the polynomial
global product structure.
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Theorem 1.1. There is no transitive Anosov diffeomorphism with the global product structure on
a product of two closed surfaces of genera each ≥ 2.

We want to proceed by reaching a contradiction. Let S1, S2 denote the two surfaces, each of
which has genus ≥ 2, and M ∶= S1 ×S2. Suppose G ∶M →M is a transitive Anosov diffeomorphism
with the global product structure.

We follow the following steps.

1. We show that up to homotopy, G can be reduced to a product of self-diffeomorphisms f1, f2
of each surfaces such that

G# = (f1)# × (f2)# ∶ π1(S1) × π1(S2)→ π1(S1) × π1(S2),
and G is homotopic to f1 × f2 =∶ F .

2. We show that both f1 and f2 have to be pseudo-Anosov.
3. We establish Handel’s result [Han85] for f1 × f2, i.e., we show that there exists a closed
G-invairant subset Y and a continuous surjective map φ ∶ Y →M , such that φ○G∣Y = F ○φ.

3. We show that φ is a homeomorphism by adjusting the argument of Handel [Han85] for the
Anosov diffeomorphism. Hence there is a contradiction.

Before we commence to give the details of the proof, we would also like to point out two apparent
questions about Anosov diffeomorphisms that arise constantly: 1. Are all Anosov diffeomorphisms
transitive? 2. Do all Anosov diffeomorphisms have the global product structure?

2 The proof of 1.1

2.1 Preliminaries and notations

We further recall several common notations and facts that we will use in our proof.
The stable and unstable distributions of an Anosov diffeomorphism on a closed manifold M

are integrable to what we call the stable and unstable leaves. We denote the local embeded discs
of diameter ε of the stable and unstable leaves centered at a point x ∈ M as W s

ε (x) and W u
ε (x)

respectively.
The local leaves also always have the local product structure, that is, there exist constants ε >

0, δ > 0 such that for all x, y ∈ M with d(x, y) < δ, W s
ε (x) and W u

ε (y) (also W u
ε (x) and W s

ε (y))
intersect transversely in a unique point. We remark that ε, δ do not depend on x, y.

Here is an important property that follows from the global and local product structure, which
we make use of repeatedly in later proofs.

Remark 2.1. Suppose that a pair of foliations F1,F2 in M̃ has both the global and the local
product structure. Then for any compact set K ⊆ M̃ , there exists a constant BK such that

sup
x∈K
{di(x, y) ∶ y ∈K is in the same leaf of Fi with x} < BK , i = 1,2,

where di denotes the distance along the leaf between two points in the same leaf of Fi. This seems
to be implicit in the proof of Theorem 1 of [Fra69], and we gave a detailed fact checking in Lemma
5.6 of [Zha24].

We also want to take the following two definitions from [Han85]. Suppose we have F ∶M →M
and G ∶M →M such that F ≃ G.

Definition 2.2. The F -orbit of x ∈M is K-globally shadowed by the G-orbit of y ∈M if there are
lifts x̃ of x and ỹ of y such that the distance in the universal cover between corresponding points
d(F̃ kx̃, G̃kỹ) ≤ K for all k ∈ Z. We write (F,x) ∼K (G,y) or (F,x) ∼ (G,y) if the shadowing
constant K is not specified.
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Definition 2.3. If x ∈M is a fixed point of Fn and x̃ is a lift of x, then F̃nx̃ = sx̃ for some covering
translation s of M̃ . Similarly, if y ∈M is a fixed point of Gn and ỹ is a lift of y, then G̃nỹ = tỹ for
some covering translation t. We say that (Fn, x) and (Gn, y) are Nielsen equivalent if there exist
lifts x̃ and ỹ such that s = t.

Remark 2.4. Both K-global shadowing and Nielsen equivalence define equivalence relations.

Remark 2.5. One useful observation that we want to make is that the definition of Nielsen equiv-
alence above is equivalent to “H-related” [Bro71], i.e., if F is homotopic to G by a homotopy
H ∶ M × I → M , and x, y are fixed points of F and G respectively, there exists a path C ∶ I → M
such that H(C(t), t) is homotopic to C(t) relative to x, y.

Indeed, if there exist lifts x̃, ỹ such that F̃nx̃ = sx̃ and G̃nỹ = sỹ where s ∈ π1(M), then by path-

connectedness of M̃ , take any path C connecting x̃, ỹ, H̃(C(t), t) is homotopic to sC(t) which is

just another lift of the same path, because M̃ is simply-connected. Thus the projection of C to M
is a path that we want.

Conversely, if there exists a path C in M such that C(0) = Fnx = x, C(1) = Gny = y, and
H(C(t), t) is homotopic to C where H is a homotopy between F and G, then the lift of the

homotopy between H(C(t), t) and C tells us that F̃nx̃ = sC̃(0) and F̃nỹ = sC̃(1) because the fibres
of the covering projection are discrete.

Throughout this note, we use S1, S2 to denote the two closed surfaces of genera ≥ 2 of our
interest, and M = S1 × S2. We are always going to let f# denote the induced automorphism of a
map f ∶ N → N on π1(N).

2.2 Reduction of the map

Let us denote Γ1 ∶= π1(S1), Γ2 ∶= π1(S2), and Γ ∶= Γ1 × Γ2.

Lemma 2.6. Let ψ ∈ Aut(Γ). Then ψ2 = ψ1 × ψ2, where ψi ∈ Aut(Γi), i = 1,2.

Proof. Let (g, h) ∈ Γ. The centralizer CΓ((g, h)) = CΓ1(g) × CΓ2(h). In a surface group G (of a
surface of genus ≥ 2), if G ∋ x ≠ id, then CG(x) = Z ( [FM11], pg. 23); if x = id, CG(x) = G.

For any ψ ∈ Aut(Γ), we have CΓ(x) CΓ(ψ(x))ψ

∼ .

Now if g = id but h ≠ id, CΓ((g, h)) ≃ Γ1 × Z ≃ CΓ(ψ(g, h)). So ψ(g, h) = (id, h′) where h′ ≠ id.
This means ψ(⟨id⟩ × Γ2) = ⟨id⟩ × Γ2 or Γ1 × ⟨id⟩ if Γ1 ≃ Γ2. Similarly ψ(Γ1 × ⟨id⟩) = Γ1 × ⟨id⟩ or
⟨id⟩ × Γ2. ∎

Again let G ∶M →M where M = S1 × S2. Without loss of generality we assume that G# splits

on π1(M). Otherwise we take G2. In the rest of the paper, we pick and fix f1 ∶ S1 → S1 and
f2 ∶ S2 → S2, surface homeomorphisms that induce the automorphsms on the fundamental groups,
as in the above lemma, such that G ≃ f1 × f2.

2.3 Handel for a product of surfaces

Now suppose G ∶ M → M is an Anosov diffeomorphism and it is homotopic to f1 × f2 where
fi ∶ Si → Si, i = 1,2 are surface diffeomorphisms. We let p1, p2 denote the projections p1 ∶M → S1
and p2 ∶M → S2.

We are always going to assume that our stable or unstable bundle of G has dimension 2. Oth-
erwise it is covered by Franks-Newhouse [Fra70] [New70].

We then have the following observation.
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Lemma 2.7. While G is Anosov with the global product structure, f1 and f2 are both pseudo-
Anosov.

Proof. Without loss of generality, we assume that the mapping class of f1 is reducible. We will
reach a contradiction.

Consider an isotopy class of simple closed curves of S1, such that the class is invariant under f1.
We take a representative simple closed curve γ of this isotopy class. We cut open γ at x ∈ γ. To
suppress the notation, we also use γ and x to denote the curve and the point in a fixed copy of S1
in the product space S1 × S2, say p−12 (y) where y ∈ S2.

Now we could choose lifts of γ and x, and denote them as γ̃ and x̃. Also fix lifts f̃1, f̃2 and G̃.
As f̃1 × f̃2 ≃ G̃, and f1 fixes the homotopy class of γ, we have that γ̃, (f̃1 × f̃2)n(γ̃) and G̃n(γ̃) are
freely homotopic for any n > 0. Let us denote G̃n(x̃) =∶ x̃n and so the other endpoint of G̃n(γ̃) is
γx̃n, as it is x̃ translated by γ, thought as a member of π1(M).

Consider the projection along the stable leaf passing through γx̃n and to the unstable leaf
through the unique intersection point z̃n (see Figure 1). Note that with our definition of notation,

G̃(x̃n) = x̃n+1, G̃(z̃n) = z̃n+1, as G̃ maps stable (unstable) leaves to stable leaves (unstable) leaves.
The piece between γx̃n and z̃n becomes shorter and the length of the piece between the points x̃n
and z̃n grows exponentially as n grows.

x̃n

γx̃n

s

z̃n u

Figure 1. Curves under iteration; s and u mark the stable and unstable leaves respectively

But on the other hand, by the property of the global product structure 2.1, for any compact set
K in M̃ , there is a large N > 0 such that x̃n and z̃n grow out of αK, for any α ∈ π1(M) (i.e. any
translation of K), as long as the unstable leaf does not entirely lie in S2, which is the case as the
leaf has dimension 2. We can further take larger N to make sure that γx̃n is so close to z̃n and
whenever n > N , γx̃n is also outside any translation of K.

Suppose now we take K to be a large set that contains any fundamental domain of M̃ and the
translation of this fundamental domain under γ. Then we have reached a contradiction, as for large
n, Gn(γ) cannot be freely homotopic to γ. ∎

We have the following proposition.

Proposition 2.8. Let f1, f2 be two pseudo-Anosov diffeomorphisms of two surfaces S1, S2, each
of which has genus ≥ 2. Suppose G ∶ S1 ×S2 → S1 ×S2 is any map that is homotopic to F ∶= f1 × f2.
Then there exists a closed subset Y ⊆ S1 × S2 and a continuous surjective map φ ∶ Y → S1 × S2,
homotopic to the inclusion, such that φ ○G∣Y = F ○ φ.

We want to point out that the proof is directly generalized from [Han85]. We include the detailed
proof for completeness in Appendix A.
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2.4 The contradiction

In this subsection, we assume our Anosov diffeomorphsim G: 1. is transitive, which implies that
periodic points are dense; 2. G has the global product structure.

Furthermore, from the last section, G# ∶ π1(M) → π1(M) does not fix any free homotopy class
neither.

Remark 2.9. We observe that a transitive Anosov diffeomorphism with the global product structure
simulates the behavior of a pseudo-Anosov diffeomorphism, so we expect that we could run the
argument of Handel one more time and get an inverse of the φ in Proposition 2.8.

Proposition 2.10. The φ defined in Proposition 2.8 is a homeomorphism.

To prove the proposition, we prove the Anosov version of following lemmas.

Lemma 2.11 (Lemma A.4 for Anosov). (i) If y1, y2 are distinct fixed points of Gn, then (Gn, y1)
and (Gn, y2) are not Nielsen equivalent. (ii) If y is G-periodic with least period n, then there exists
x which is F -periodic with least period n and such that (Fn, x) is Nielsen equivalent to (Gn, y).

Proof. Suppose Gn fixes y1 and y2 and (Gn, y1) and (Gn, y2) are Nielsen equivalent, i.e., there

exists lifts ỹ1, ỹ2 and t ∈ π1(M) such that G̃nỹ1 = tỹ1 and G̃nỹ2 = tỹ2. Then t−1G̃n, as another lift
of G̃n, fixes both ỹ1 and ỹ2. Suppose z̃ is the intersection of the unstable leaf of ỹ1 and stable leaf
ỹ2. Then z̃ must also be fixed, which is impossible, because t−1G̃n maps the unstable (stable) leaf
to the unstable (stable) leaf and maps the intersection to the intersection.

Now the fixed point index of G can only be (−1)the dimension of the unstable bundle = ±1. By Theorem
3, pg 94 of [Bro71], there exists a fixed point x of Fn such that (Fn, x) is Nielsen equivalent to
(Gn, y). We can check that n is the least period of x , by the same argument as in the proof Lemma
A.4. ∎

Corollary 2.12 (Theorem A.8 (ii) for Anosov). For all y ∈ M , there exists an x ∈ M such that
(F,x) ∼ (G,y); if y is G-periodic with least period n, then x can be chosen to be F -periodic with
least period n.

Proof. Lemmas A.2 and A.6 are still true because we are working with F . Note that since Nielsen
equivalence and K-global shadowing are symmetric, because they are equivalence relations, for our
fixed F,G, we can simply apply the statements for F .

Now because the periodic points of G are also dense, for any y ∈ M , there exists a sequence of
periodic points yn that approaches y and each of which is globally shadowed by a periodic point
xn of F , by Lemma 2.11. Then we can choose a convergent subsequence of xn. The limit point
globally shadows y, by Lemma A.6. It has least period n, which follows the same argument as in
Lemma A.4 (see also Remark A.9). ∎

Proof of Proposition 2.10. Recall that in the proof of Proposition 2.8 (i.e. Theorem A.1 of the
Appendix), we have defined

Y = {y ∈M ∶ there exists x ∈M which globally shadows y},

and φ ∶ Y → M such that φ(y) = x where x globally shadows y. By Corollary 2.12, Y = M . We
only need to show that φ is injective.

Assume that there are y1 ≠ y2 such that φ(y1) = φ(y2). Then there are lifts ỹ1 ≠ ỹ2 and φ̃ such
that φ̃(ỹ1) = φ̃(ỹ2).
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Consider the unique intersection z̃ of the unstable leaf u1 of ỹ1 and the stable leaf s2 of ỹ2. Let du
and ds denote the distances between two points along the unstable and stable leaves respectively.
We know that

du(G̃kỹ1, G̃kz̃) ≥ Cµ−kdu(ỹ1, z̃), and(1)

ds(G̃−kỹ2, G̃−kz̃) ≥ Cµ−kds(ỹ2, z̃),(2)

where µ ∈ (0,1) and k > 0.
From the topology of the measured foliations of the pseudo-Anosov maps, we know that each

pair of stable and unstable leaves also intersect only once. Also, φ̃ maps local stable and unstable
discs of G̃ to the local stable and unstable discs of F̃ respectively. Thus φ̃(z̃) = φ̃(ỹ1) = φ̃(ỹ2). In
addition, for any n ∈ Z,

φ̃(G̃nỹ1) = F̃n(φ̃ỹ1) = F̃n(φ̃ỹ2) = F̃n(φ̃z̃) = φ̃(G̃nỹ2) = φ(G̃nz̃).
On the other hand, if we let K denote the preimage of a fundamental domain of M under φ̃. It

is compact because φ̃ is proper. There is an upperbound BK > 0 depending on K such that

sup
x∈K
{du(x, y) ∶ y ∈ u(x; G̃)} ≤ BK

where u(x; G̃) denotes the unstable leaf of G̃ passing through x (see Remark 2.1). But now (1)

tells us that the distance between G̃nỹ1 and G̃nz̃ along the leaf can be unbounded as n →∞. We
have reached a contradiction. ∎

Proof of the main theorem 1.1. The homeomorphism φ should map the leaves of G to the leaves of
F , but this is impossible when it comes to a singular leaf of F . ∎

Acknowledgements. I would like to thank Jean Lafont for pointing me to this question and
many conversations.

A Proof of Handel for a product of surfaces

In this appendix, we let f1 ∶ S1 → S1, f2 ∶ S2 → S2 denote two pseudo-Anosov diffeomorphisms of
closed surfaces S1, S2, denote M ∶= S1 × S2, and let G ∶M →M be any map that is homotopic to
F ∶= f1 × f2.

We follow [Han85] to prove the following theorem.

Theorem A.1 (Theorem 2 of [Han85]). There exists a closed G-invariant subset Y ⊆ M and a
continuous surjective map φ ∶ Y →M that is homotopic to an inclusion, such that φ ○G∣Y = F ○φ.

We will make use of the following properties for a pseudo-Anosov homeomorphism f ∶ S → S,
where S is a closed surface.

(1) The periodic points of f are dense;
(2) The action induced by f on the free homotopy classes of S has no periodic orbits;
(3) The fixed point index of a fixed point x of fn is never 0;

(4) There exist λ > 1 and an equivariant metric D̃ on the universal cover S̃ of S such that

D̃ =
√
D̃2
s + D̃2

u, where D̃s ∶ S̃× S̃ → [0,∞) and D̃u ∶ S̃× S̃ → [0,∞) are equivariant functions
satisfying:

D̃u(f̃ x̃1, f̃ x̃2) = λD̃u(x̃1, x̃2) and D̃s(f̃−1x̃1, f̃−1x̃2) = λD̃s(x̃1, x̃2)
for all x̃1, x̃2 ∈ S̃ and all lifts f̃ of f .

We now check the corresponding properties for F . Note (4’) is different but will be sufficient for
our purposes.

(1’) The periodic points of F are dense.
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Proof. Let P1,P2,P be sets of periodic points of f1, f2 and F , respectively. Then if (x1, x2) ∈ P1×P2,
there exist n1, n2 such that fn1x1 = x1 and fn2x2 = x2, so FN(x1, x2) = (x1, x2) for some N and
P1 × P2 ⊆ P. Since the periodic points of f1 and f2 are dense, P1 = S1 and P2 = S2. For any
(x, y) ∈ M , any neighborhood U × V that contains (x, y), there exist x′ ∈ U ∩ P1, y′ ∈ V ∩ P2, so
(x′, y′) ∈ U × V ∩P1 ×P2 ⊆ P. Therefore P ⊃M and P =M . ∎

(2’) The action induced by F on the free homotopy classes of M has no periodic orbits.

Proof. We know that π1(M) = π1(S1)×π1(S2) and F# = (f1)#×(f2)#. Suppose F# has a periodic

orbit. There exist α ∈ π1(S1), β ∈ π1(S2), γ ∈ π1(M), and n ∈ N such that ((f1)n#α, (f2)
n
#β) =

γ−1(α,β)γ. Then there exist periodic free homotopy classes of f1, f2, which contradicts to (2). ∎

(3’) The fixed point index of a fixed point (x, y) ∈M of Fn is never 0.

Proof. By [Bro71], Theorem 6, p. 60., the index of a product is the product of the indices. ∎

(4’) Let D̃1 =
√
D̃2

1s + D̃2
1u, D̃2 =

√
D̃2

2s + D̃2
2u denote the equivariant metrics on the universal

covers S̃1, S̃2 respectively, which satisfy (4) above.

For x̃ = (x̃1, x̃2), ỹ = (ỹ1, ỹ2) ∈ M̃ , define the product metric on M̃

D̃s((x̃1, x̃2), (ỹ1, ỹ2)) =
√
D̃2

1s(x̃1, ỹ1) + D̃2
2s(x̃2, ỹ2),

D̃u((x̃1, x̃2), (ỹ1, ỹ2)) =
√
D̃2

1u(x̃1, ỹ1) + D̃2
2u(x̃2, ỹ2),

and D̃ =
√
D̃2
s + D̃2

u ∶ M̃ × M̃ → [0,∞). Then D̃ is an equivariant metric on M̃ because if

α ∈ π1(S1) and β ∈ π1(S2),

D̃((α,β)(x̃1, x̃2), (α,β)(ỹ1, ỹ2)) =
√
D̃2

1(αx̃1, αỹ1) + D̃2
2(βx̃2, βỹ2)

=
√
D̃2

1(x̃1, ỹ1) + D̃2
2(x̃2, ỹ2)

= D̃((x̃1, x̃2), (ỹ1, ỹ2)).

Suppose λ1 and λ2 are the constants from (4) such that

D̃1u(f̃1x̃1, f̃1ỹ1) = λ1D̃1u(x̃1, ỹ1), and D̃2u(f̃2x̃2, f̃2ỹ2) = λ2D̃2u(x̃2, ỹ2).
Let λ =min{λ1, λ2} > 1, λ′ =max{λ1, λ2} > 1. We have

λD̃u((x̃1, x̃2), (ỹ1, ỹ2)) ≤ D̃u((f̃1 × f̃2)(x̃1, x̃2), (f̃1 × f̃2)(ỹ1, ỹ2))

=
√
D̃2

1u(f̃1x̃1, f̃1ỹ1) + D̃2
2u(f̃2x̃2, f̃2ỹ2)

=
√
λ21D̃

2
1u(x̃1, ỹ1) + λ22D̃2

2u(x̃2, ỹ2)

≤ λ′D̃u((x̃1, x̃2), (ỹ1, ỹ2)).

Similarly, λD̃s(x̃, ỹ) ≤ D̃s(F̃ −1x̃, F̃−1ỹ) ≤ λ′D̃s(x̃, ỹ). ∎
Let p ∶ M̃ → M denote the covering projection. We fix a lift F̃ = f̃1 × f̃2 ∶ M̃ → M̃ of F . Then

there is a unique lift G̃ ∶ M̃ → M̃ , that is equivariantly homotopic to F̃ .
Now we show that for periodic points x of F and y of G, both of period n, the fact that the orbit

of x is K-globally shadowed by the orbit of y is equivalent to that (Fn, x) and (Gn, y) are Nielsen
equivalent.

Lemma A.2 (Lemma 1.7 of [Han85]). If x is a fixed point of Fn and y is a fixed point of Gn, then
(Fn, x) is Nielsen equivalent to (Gn, y) if and only if (F,x) ∼ (G,y).
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Proof. First suppose (Fn, x) and (Gn, y) are Nielsen equivalent, so there exist lifts x̃, ỹ ∈ M̃ and a

covering transformation t such that F̃ x̃ = tx̃ and G̃ỹ = tỹ. Then
D̃(F̃ kx̃, G̃kỹ) = D̃(F̃ k−nF̃nx̃, G̃k−nG̃nỹ) = D̃(F̃ k−ntx̃, G̃k−ntỹ)

= D̃(F̃ k−ntF̃−(k−n)F̃ k−nx̃, G̃k−ntG̃−(k−n)G̃k−nỹ)

= D̃(t′F̃ k−nx̃, t′G̃k−nỹ) = D̃(F̃ k−nx̃, G̃k−nỹ),

where t′ = F̃ k−ntF̃−(k−n) = G̃k−ntG̃−(k−n) is another covering transformation, equal because F ≃ G.
Thus D̃(F̃ kx̃, G̃kỹ) takes on only finitely many values, namely, for k = 0,1, . . . , n−1, so it is bounded.

Conversely, if (F,x) ∼ (G,y), then there exist lifts x̃ of x, and ỹ of y such that D̃(F̃ kx̃, G̃kỹ) ≤K
for some K > 0 and for all k ∈ Z. Suppose F̃nx̃ = sx̃ and G̃nỹ = tỹ. Then s−1F̃nx̃ = x̃. Since F ≃ G,
for any γ ∈ π1(M), G#γ = F#γ. Thus

D̃(x̃, (s−1G̃n)kỹ) = D̃((s−1F̃n)kx̃, (s−1G̃n)kỹ) = D̃(F̃nkx̃, G̃nkỹ) ≤K, for all k ∈ Z.
Any bounded subset of M̃ intersects only finitely many lifts of y, and (s−1G̃n)kỹ is yet another

lift of y. There exists an N ∈ N≥0 such that (s−1G̃n)N ỹ = ỹ. On the other hand

(s−1G̃n)N+1ỹ = (s−1G̃n)ỹ = s−1tỹ = (s−1G̃n)N(s−1tỹ).
So

s−1t(s−1G̃n)N ỹ = s−1tỹ = (s−1G̃n)Ns−1tỹ.
This implies that s−1t(s−1G̃n)N = (s−1G̃n)Ns−1t, which implies that GnN fixes the free homotopy
class corresponding to s−1t. Then by (2’), s−1t = 1, so s = t. ∎

Remark A.3. Note that only in the very last line of the proof we needed the fact that F is a
product of pseudo-Anosov diffeomorphisms and used poperty (2’). Thus we can claim that Nielsen
equivalence always implies K-global shadowing.

Lemma A.4 (Lemma 2.1 of [Han85]). (i) If x1 and x2 are distinct fixed points of Fn, then (Fn, x1)
and (Fn, x2) are not Nielsen equivalent; (ii) If x is F -periodic with least period n, then there exists
y which is G-periodic with least period n and such that (Fn, x) is Nielsen equivalent to (Gn, y).

Proof. For (i), suppose (Fn, x1) and (Fn, x2) are Nielsen equivalent. There are lifts x̃1 of x1 and

x̃2 of x2 such that F̃ x̃1 = tx̃1 and F̃ x̃2 = tx̃2. Then t−1F̃ x̃1 = x̃1 and t−1F̃ x̃2 = x̃2. t−1F̃ has to be a
lift of F that fixes both x̃1 and x̃2, but by (4’), there is no lift of any iterate of F that can fix two
distinct points.

Now we prove (ii). Let H ∶ M × I → M be the homotopy such that H(x,0) = Fn(x) and
H(x,1) = Gn(x). By (3’), the fixed point index of any fixed point of Fn is never zero, so Theorem
3, p. 94 in [Bro71] states that there exists a fixed point of y that is Nielsen equivalent to x.

It is sufficient to show that y has least period n.
Now fix lifts x̃, ỹ such that F̃nx̃ = tx̃ and G̃nỹ = tỹ, t ∈ π1(M), so t−1F̃nx̃ = x̃ and t−1G̃nỹ = ỹ,

i.e. t−1G̃n is a lift of Gn that fixes ỹ. Suppose y has least period m1 < n and let m2 = n/m1 > 1.
There exist unique lifts F̃n and G̃n such that F̃nx̃ = x̃ and G̃nỹ = ỹ. We can find a t1 ∈ π1(M) such
that t−1G̃n = (t1G̃m1)m2 . Since t1F̃

m1 is equivariantly homotopic to t1G̃
m1 and by uniqueness of

the equivariant lift, t−1F̃n = (t1F̃m1)m2 . This implies, for any k ∈ Z,

(t−1F̃n)(t1F̃m1)kx̃ = (t1F̃m1)m2+kx̃ = (t1F̃m1)kt−1F̃nx̃ = (t1F̃m1)kx̃,
that is, t−1F̃n fixes the entire t1F̃

m1 orbit of x̃. But we observed by (4’) that no lift of an iterate

of F can fix two distinct points, so t1F̃
m1 fixes x̃ and is equal to t−1F̃n. Therefore m1 = n. ∎

Remark A.5. In the above proof we needed properties (3’) and (4’).
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Lemma A.6 (Lemma 2.2 of [Han85]). There exists a K = K(G) (dependent on G) such that for
any x, y ∈ M , if (F,x) ∼ (G,y), then (F,x) ∼K (G,y). In particular, if xn → x, yn → y, and
(F,xn) ∼ (G,yn) then (F,x) ∼ (G,y).

Proof. Let

R =max{ sup
x̃∈M̃

D̃(F̃ x̃, G̃x̃), sup
x̃∈M̃

D̃(F̃−1x̃, G̃−1x̃)}.

This maximum is reached and R <∞ because F is homotopic to G, M is compact and the metric
is equivariant.

(4’) then implies that

D̃u(F̃ x̃, G̃ỹ) ≥ D̃u(F̃ x̃, F̃ ỹ) − D̃u(F̃ ỹ, G̃ỹ) ≥ λD̃u(x̃, ỹ) −R,

and similarly D̃s(F̃−1x̃, G̃−1ỹ) ≥ λD̃s(x̃, ỹ) −R.
Let K = 2(R + 1)/(λ − 1). If D̃u(x̃, ỹ) >K/2, then

D̃u(F̃ x̃, G̃ỹ) − D̃u(x̃, ỹ) ≥ (λ − 1)D̃u(x̃, ỹ) −R > 1,

so D̃u(F̃ x̃, G̃ỹ) > 1 + D̃u(x̃, ỹ). If D̃s(x̃, ỹ) >K/2, then D̃s(F̃−1x̃, G̃−1ỹ) > 1 + D̃s(x̃, ỹ). This means
if any of the distances between the iterates of x̃, ỹ exceeds K/2, the orbits cannot globally shadow
each other, for any constant K ′.

Therefore, if (F,x) ∼ (G,y), there must be lifts x̃, ỹ such that D̃u(F̃ kx̃, G̃kỹ) ≤ K/2 and

D̃s(F̃ kx̃, G̃kỹ) ≤ K/2 for all k ∈ Z. Then D̃(F̃ kx̃, G̃kỹ) ≤ K for all k ∈ Z. We have found a
uniform bound, namely K, for the shadowing constant. We can write (F,x) ∼K (G,y). This K is
independent of x, y.

Now we prove the second statement of the lemma. Suppose xn → x, yn → y, and for each n, fix
lifts so D̃(F̃ kx̃n, G̃kỹn) ≤K for all k. We claim that there exist convergent subsequences {x̃nj} and
{ỹnj} that converge to lifts x̃, ỹ so D̃(F̃ kx̃, G̃kỹ) ≤K for all k.

Take U ⊆M , a neighborhood of x that is evenly covered by the covering projection p. There is
an N ∈ N such that for all n ≥ N , xn ∈ U . Take Ũ ⊆ p−1U to be the connected component that
contains x̃N , the lift that we picked as above. Then for each x̃n ∈ {x̃n}n>N there is a tn ∈ π1(M)
such that tnx̃n ∈ Ũ , so {tnx̃n}n>N converges to a lift x̃ of x. We want to show that {tnỹn}n>N
contains a convergent subsequence. For any n > N ,

D̃(tN+1ỹN+1, tnỹn) ≤ D̃(tN+1ỹN+1, tN+1x̃N+1) + D̃(tN+1x̃N+1, tnx̃n) + D̃(tnx̃n, tnỹn) ≤ 2K + ε,

for a small ε, the diameter of Ũ , by the uniform boundedness we showed above and equivariance
of the metric. Thus {tnỹn}n>N is a bounded sequence. Therefore, there is a subsequence {tnj ỹnj}
that converges to some lift ỹ of y.

Now for any k ∈ Z,
D̃(F̃ kx̃, G̃kỹ) ≤ D̃(F̃ kx̃, F̃ kx̃nj) + D̃(F̃

kx̃nj , G̃
kỹnj) + D̃(G̃

kỹnj , G̃
kỹ) ≤K + 2ε,

for large enough nj and small ε. Thus (F,x) ∼ (G,y). ∎

Remark A.7. In the above proof we needed (4’).

Theorem A.8 (Theorem 1 of [Han85]). (i) (F,x1) ∼ (F,x2) implies that x1 = x2; (ii) For all
x ∈ M , there exists y ∈ M such that (F,x) ∼ (G,y); if x is F -periodic with least period n, then y
can be chosen to be G-periodic with least period n.

Proof. By (4’) we have (i).
By (1’) periodic points of F are dense in M . For any x ∈ M , there exists a sequence {xn}

of periodic points of F , each with least period pn, such that xn → x. Then by Lemma A.4
(ii), for each n, there exists yn that is G-periodic with least period pn and (F pn , xn) is Nielsen
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equivalent to (Gpn , yn). By Lemma A.2, (F,xn) ∼ (G,yn) for all n. Since M is compact, there is a
subsequence {ynk

} ⊆ {yn} such that ynk
→ y as k →∞, for some y ∈M , so (F,xnk

) ∼ (G,ynk
) and

xnk
→ x, ynk

→ y. By Lemma A.6, we have (F,x) ∼ (G,y). If x is F -periodic, the last statement
trivially follows from A.4 and A.2. ∎

Remark A.9. Note that in the above proof we used the fact that Nielsen equivalence implies global
shadowing to find points that shadow, which does not require property (2’), as said in Remark A.3.

Proof of A.1. Let Y = {y ∈M ∶ ∃x ∈M such that (F,x) ∼ (G,y)}. For any x0 ∈M , by Theorem A.8
(ii), there exsits y0 ∈M such that (F,x) ∼ (G,y). Thus we can define a surjective map φ ∶ Y →M
by φ(y0) = x0. It is well-defined by Theorem A.8 (i).

Next we show that Y is closed. Take a convergent sequence {yn} ⊆ Y such that yn → y for some
y ∈ M . For each yn there is an xn such that (F,xn) ∼ (G,yn). Because M is compact, there is a
subsequence {xnk

} of {xn} such that xnk
→ x ∈M . Thus by Lemma A.6, we have (F,x) ∼ (G,y)

and so y ∈ Y and Y is closed.
By the above and how we define φ, if {yn} ⊆ Y is such a sequence that yn → y ∈ Y , then we

have xn = φ(yn) and φ(y) = x. Suppose another convergent subsequence xnk
→ x′ ≠ x. Then

(F,x′) ∼ (G,y), which cannot happen because of A.8 (i). Thus {xn} also converges to x, and φ is
continuous.

We define φ̃(ỹ) = x̃ for such lifts so we have D̃(f̃kx̃, g̃kỹ) ≤K for all k ∈ Z, where K is as in A.6.

Then D̃(φ̃(ỹ), ỹ) ≤K for ỹ ∈ Ỹ , so φ is homotopic to the inclusion.
Finally, take y ∈ Y . Since (F,x) ∼ (G,y) implies (F,F (x)) ∼ (G,G(y)), F ○ φ(y) = F (x) =

φ(G(y)). Therefore F ○ φ = φ ○G∣Y . ∎
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